Math, asked by krishnachandra1121, 5 months ago

1 - X
IPL 14 YIf y =
prove that (1 – ~? )
+ y =0.
dx
1 + x
can anyone give me answer of this by chain rule method​

Answers

Answered by n799020
0

y=e

asin

−1

x

∴y

1

=

dx

d(e

asin

−1

x

)

=e

asin

−1

x

dx

d(asin

−1

x)

=ae

asin

−1

x

1−x

2

1

=a

(1−x

2

)

0.5

y

∴y

2

=

dx

y

1

=

dx

(ae

asin

−1

x

1−x

2

1

)

∴y

2

=a

e

asin

−1

x

dx

d

1−x

2

1

+

1−x

2

1

dx

de

asin

−1

x

∴y

2

=a[e

asin

−1

x

2(

1−x

2

)

3

−1

(−2x)+

1−x

2

y

1

]

∴y

2

=a[

(1−x

2

)

1.5

xy

+

1−x

2

y

1

]

Now, multiply by (1−x

2

) on both sides

∴(1−x

2

)y

2

=xy

1

+ay

1

1−x

2

(substituting y

1

)

∴(1−x

2

)y

2

=xy

1

+a

2

(1−x

2

)

0.5

y

1−x

2

∴(1−x

2

)y

2

=xy

1

+a

2

y

∴(1−x

2

)y

2

−xy

1

−a

2

y=0

Hence, proved.

Similar questions