Math, asked by Shivv6422, 1 year ago

|1 x x³ |
|1 y y³ | =(x-y)(y-z)(z-x)(x+y+z)
|1 z z ³ |
,prove it using theorems

Answers

Answered by MaheswariS
0

Answer:

\bf\:\triangle=\left|\begin{array}{ccc}1&x&x^3\\1&y&y^3\\1&z&z^3\end{array}\right|=(x-y)(y-z)(z-x)(x+y+z)

Step-by-step explanation:

|1 x x³ |

|1 y y³ | =(x-y)(y-z)(z-x)(x+y+z)

|1 z z ³ | 

I have applied factor theorem to solve this problem

Let\:\triangle=\left|\begin{array}{ccc}1&x&x^3\\1&y&y^3\\1&z&z^3\end{array}\right|

put x=y

Let\:\triangle=\left|\begin{array}{ccc}1&y&y^3\\1&y&y^3\\1&z&z^3\end{array}\right|

\text{since }C_1\text{ and }C_2\text{ are identical, }\triangle=0

\therefore\text{ (x-y) is a factor of }\triangle

\text{similarly, (y-z) and (z-x) are factors of }\triangle

\text{Hence, (x-y)(y-z)(z-x) is a factor of }\triangle

\text{Its degree is 3}

\text{Product of leading diagonal elements = }1.y.z^3

\text{Its degree is 4}

\text{Difference, m=4-3=1}

By symmetric and cyclic property, the remaining factor must be k(x+y+z)

\implies\:\triangle=\left|\begin{array}{ccc}a1&x&x^3\\1&y&y^3\\1&z&z^3\end{array}\right|=k(x-y)(y-z)(z-x)(x+y+z)

put x=0, y=1 and z=2

\triangle=\left|\begin{array}{ccc}a1&0&0\\1&1&1\\1&2&8\end{array}\right|=k(0-1)(1-2)(2-0)(0+1+2)

\implies\:1(8-2)=k(6)

\implies\:6=k(6)

\implies\:k=1

\implies\boxed{\bf\:\triangle=\left|\begin{array}{ccc}1&x&x^3\\1&y&y^3\\1&z&z^3\end{array}\right|=(x-y)(y-z)(z-x)(x+y+z)}

Similar questions