1/x+y = 1/x + 1/y then find the value of ( x/y)^6 + (x/y)^3
Answers
Answered by
17
Answer:
0
Step-by-step explanation:
given that 1/x+y=1/x+1/y;
1/x+y=x+y/xy;
(x+y)^2=xy;
x^2+y^2+2xy=xy;
x^2+y^2-xy=0 (let this be eqn 1)
(x/y)^6+(x/y)^3=(x^6+x^3*y^3)/y^6
=[x^3(x^3+y^3)]/y^6
=[x^3{(x+y)(x^2-xy+y^2)}]/y^6
=[x^3{(X+y)*(0)}]/y^6
=0
Similar questions