Math, asked by santoshidarai2, 1 month ago

1/(x-y) + 1 /(x + y) + 2x/(x^2+y^2) + 4x^3/(x^4+y^4)​

Answers

Answered by blueberrycake667
1

Answer:

8x^7 / x^8 - y^8

Step-by-step explanation:

1. 1/(x-y) + 1 /(x + y)

= x + y + x - y / (x-y)(x+y)

= 2x / (x^2 - y^2)

2.  2x / (x^2 - y^2) + 2x / (x^2 + y^2)

= 2x^3 + 2xy^2 + 2x^3 - 2xy^2 / (x^4 - y^4)

= 4x^3 / (x^4 - y^4)

3.   4x^3 / (x^4 - y^4) + 4x^3/(x^4+y^4)​

= 4x^7 + 4x^3y^4 + 4x^7 - 4x^3y^4

= 8x^7 / (x^8 - y^8)

Answered by ramkrishnanj10
1

\large\mathscr \color{black}\colorbox{red}{\colorbox{orange}{\colorbox{yellow}{\colorbox{green}{\colorbox{blue}{\colorbox{indigo}{\colorbox{violet}{\underline {ANSWER}}}}}}}}

\large\tt\color{lime}{ \frac{1}{x - y} +  \frac{1}{x + y}  } +  \frac{2x}{ {x}^{2} +   {y}^{2} }  +  \frac{ {4x}^{3} }{ {x}^{4} +  {y}^{4}  }  \\  \\\longmapsto\large\tt\color{lime}{ \frac{(x + y) + (x - y)}{ {x}^{2}-  {y}^{2}  } +   \frac{2x}{ { {x}^{2} }  +  {y}^{2}  }  + \frac{ {4x}^{3} }{ {x}^{4}  +  {y}^{4} } } \\  \\ \longmapsto\large\tt\color{lime}{\frac{2x}{ {x}^{2}  -  {y}^{2}} +  \frac{2x}{ {x}^{2}  +  {y}^{2} } +  \frac{4 {x}^{3} }{ {x}^{4}  +  {y}^{4} }  }

\longmapsto\large\tt\color{lime}{ \frac{2x( { {x}^{2}  + y}^{2} +  {x}^{2}   -  {y}^{2}) }{ ({x}^{2} -  {y}^{2})( {x}^{2} +  {y}^{2}  ) } } +  \frac{4 {x}^{3} }{ {x}^{4} +  {y}^{4}  }  \\  \\\longmapsto \large\tt\color{lime}{\frac{4 {x}^{3} }{ {x}^{4}  -  {y}^{4} }  +  \frac{4 {x}^{ 3} }{ {x}^{4} +  {y}^{4}  } }\\\\\longmapsto\large\tt\color{lime}  \frac{4 {x}^{3} ( {x}^{4}   +  {y}^{4}  +  {x}^{4}  -  {y}^{4} )}{( {x}^{4} +  {y}^{4})( {x}^{4} - {y}^{4})}\\\\\longmapsto\large\tt\color{cyan}{\underline{\underline{\frac{{8x}^{7}}{{x}^{8}-{y}^{8}}}}}

Similar questions