Accountancy, asked by anshupriu, 2 months ago


1. X Y and Z are partners sharing profits and losses in the ratio of 5 : 3:2. They admit A into partnership
and give him 1/5th share of profits. Find the new profit-sharing ratio.

Answers

Answered by Sauron
57

Answer:

New profit-Sharing Ratio =

  • X : Y : Z : A
  • 10 : 6 : 4 : 5

Explanation:

Old Ratio :

X : Y : Z = 5 : 3 : 2

  • X's Share =  \dfrac{5}{10}

  • Y's Share =  \dfrac{3}{10}

  • Z's Share =  \dfrac{2}{10}

★ They admit A into partnership and give him 1 / 5 th share of profits

Let,

Total Profit Share = 1

So,

  • A's Share =  \dfrac{1}{5}

Remaining Share :

1 -  \dfrac{1}{5}  =  \dfrac{4}{5}

X's New Share =

\longrightarrow \:  \dfrac{4}{5}  \:  \times   \: \dfrac{5}{10}

\longrightarrow \:  \dfrac{20}{50}

Y's New Share =

\longrightarrow \:  \dfrac{4}{5}  \:  \times  \:  \dfrac{3}{10}

 \longrightarrow \: \dfrac{12}{50}

Z's New Share =

\longrightarrow \:  \dfrac{4}{5}  \:  \times  \:  \dfrac{2}{10}

\longrightarrow \:  \dfrac{8}{50}

A's Share =

\longrightarrow \:  \dfrac{1}{5}  \:  =  \:  \dfrac{10}{50}

New profit-Sharing Ratio =

  • X : Y : Z : A

  •  \dfrac{20}{50}  :  \dfrac{12}{50}  :   \dfrac{8}{50}  :  \dfrac{10}{50}

\longrightarrow 20 : 12 : 8 : 10

\longrightarrow 10 : 6 : 4 : 5

Therefore,

New profit-Sharing Ratio =

  • X : Y : Z : A
  • 10 : 6 : 4 : 5
Answered by Anonymous
111

Answer:

Given :-

  • X , Y and Z are partners sharing profits and losses in the ratio of 5 : 3 : 2. They admit A into partnership and give him ⅕th share of profits.

To Find :-

  • What is the new ratio of profit sharing.

Solution :-

First, we have to find the share of X's , Y's and Z's.

\longmapsto Share of X's :

\sf \dfrac{5}{5 + 3 + 2}

\sf\bold{\pink{\dfrac{5}{10}}}

\longmapsto Share of Y's :

\sf \dfrac{3}{5 + 3 + 2}

\sf\bold{\pink{\dfrac{3}{10}}}

\longmapsto Share of Z's :

\sf \dfrac{2}{5 + 3 + 2}

\sf\bold{\pink{\dfrac{2}{10}}}

Again, they admit A into partnership and give him th share of profits.

Let, the total share of profits of A's be 1

Then, the share of A's :

\sf\bold{\pink{\dfrac{1}{5}}}

And, the remaining share of A's :

\sf 1 - \dfrac{1}{5}

\sf \dfrac{5 - 1}{5}

\sf\bold{\pink{\dfrac{4}{5}}}

Now, we have to find the new share of X's , Y's , Z's and A's :

\mapsto New share of X's :

\sf \dfrac{5}{10} \times \dfrac{4}{5}

\sf \dfrac{5 \times 4}{10 \times 5}

\sf\bold{\red{\dfrac{20}{50}}}

\mapsto New share of Y's :

\sf \dfrac{3}{10} \times \dfrac{4}{5}

\sf \dfrac{3 \times 4}{10 \times 5}

\sf\bold{\red{\dfrac{12}{50}}}

\mapsto New share of Z's :

\sf \dfrac{2}{10} \times \dfrac{4}{5}

\sf \dfrac{2 \times 4}{10 \times 5}

\sf\bold{\red{\dfrac{8}{50}}}

\mapsto New share of A's :

\sf \dfrac{1}{5}

\sf\bold{\red{\dfrac{10}{50}}}

Now, we have to find the new profit-sharing ratio :

\sf X : Y : Z : A

\sf \dfrac{20}{\cancel{50}} : \dfrac{12}{\cancel{50}} : \dfrac{8}{\cancel{50}} : \dfrac{10}{\cancel{50}}

\sf 20 : 12 : 8 : 10

\sf\boxed{\bold{10 : 6 : 4 : 5}}

\therefore The new profit-sharing ratio is 10 : 6 : 4 : 5 .

Similar questions