Math, asked by 9979150250, 4 months ago

1) x2 - 110x + 2856 answer the questions please​

Answers

Answered by kashinadhis2009
0

Answer:

Step-by-step explanation:

Changes made to your input should not affect the solution:

(1): "x2"   was replaced by   "x^2".  

Step by step solution :

STEP

1

:

Trying to factor by splitting the middle term

1.1     Factoring  x2-110x+2856  

The first term is,  x2  its coefficient is  1 .

The middle term is,  -110x  its coefficient is  -110 .

The last term, "the constant", is  +2856  

Step-1 : Multiply the coefficient of the first term by the constant   1 • 2856 = 2856  

Step-2 : Find two factors of  2856  whose sum equals the coefficient of the middle term, which is   -110 .

     -2856    +    -1    =    -2857  

     -1428    +    -2    =    -1430  

     -952    +    -3    =    -955  

     -714    +    -4    =    -718  

     -476    +    -6    =    -482  

     -408    +    -7    =    -415  

     -357    +    -8    =    -365  

     -238    +    -12    =    -250  

     -204    +    -14    =    -218  

     -168    +    -17    =    -185  

     -136    +    -21    =    -157  

     -119    +    -24    =    -143  

     -102    +    -28    =    -130  

     -84    +    -34    =    -118  

     -68    +    -42    =    -110    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -68  and  -42  

                    x2 - 68x - 42x - 2856

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (x-68)

             Add up the last 2 terms, pulling out common factors :

                   42 • (x-68)

Step-5 : Add up the four terms of step 4 :

                   (x-42)  •  (x-68)

            Which is the desired factorization

Equation at the end of step

1

:

 (x - 42) • (x - 68)  = 0  

STEP

2

:

Theory - Roots of a product

2.1    A product of several terms equals zero.  

When a product of two or more terms equals zero, then at least one of the terms must be zero.  

We shall now solve each term = 0 separately  

In other words, we are going to solve as many equations as there are terms in the product  

Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation:

2.2      Solve  :    x-42 = 0  

Add  42  to both sides of the equation :  

                     x = 42

Solving a Single Variable Equation:

2.3      Solve  :    x-68 = 0  

Add  68  to both sides of the equation :


9979150250: thank you for very much ❤️❤️❤️
Similar questions