Math, asked by shibashish47, 9 months ago

(1 + x²) cosĂ = 4x then Prove it that
Co secA
+
Cot A =1+2x
\1-2x​

Answers

Answered by NetraJ7
0

Step-by-step explanation:

Given that

(1+4x^{2})cosA=4x(1+4x

2

)cosA=4x

We can rearrange the above equation as

cosA=\frac{4x}{(1+4x^{2})}cosA=

(1+4x

2

)

4x

... (1)

As we know that

cosA=\frac{Base}{Hyp}cosA=

Hyp

Base

... (2)

Comparing (1) and (2)

Base=4xBase=4x

Hyp=(1+4x^{2})Hyp=(1+4x

2

)

Now by pythagorean theorem we can find that

Perp=1-4x^{2}Perp=1−4x

2

As we know

cosecA=\frac{hyp}{perp}cosecA=

perp

hyp

cosecA=\frac{1+4x^{2}}{1-4x^{2}}cosecA=

1−4x

2

1+4x

2

cotA=\frac{base}{perp}cotA=

perp

base

cosecA=\frac{4x}{1-4x^{2}}cosecA=

1−4x

2

4x

Now

cosecA + cotA = \frac{1+4x^{2}}{1-4x^{2}}+\frac{4x}{1-4x^{2}}

1−4x

2

1+4x

2

+

1−4x

2

4x

cosecA + cotA = \frac{1+4x^{2} + 4x}{1-4x^{2}}

1−4x

2

1+4x

2

+4x

cosecA + cotA = \frac{(1 + 2x)^{2}}{(1-2x)(1+2x)}

(1−2x)(1+2x)

(1+2x)

2

cancelling the same terms in numerator and denominator

cosecA + cotA = \frac{(1 + 2x)}{(1-2x)}

(1−2x)

(1+2x)

Hence proved

Similar questions