Math, asked by vasanthanarayana741, 3 months ago

(1+xy)ydx+(1-xy)xdy=0​

Answers

Answered by mathdude500
11

Given Question :-

  • Solve the differential equation

 \sf \: (1 + xy)ydx + (1 - xy)xdy = 0

\large\underline{ \bf{Solution :-  }}

  • Given Differential equation is

\rm :\longmapsto\:(1 + xy)ydx + (1 - xy)xdy = 0

  • On comparing with Mdx + Ndy = 0,

we get

  • M = (1 + xy)y

and

  • N = (1 - xy)x

Now,

  • Consider

\rm :\longmapsto\:\dfrac{ \partial \:M }{\partial \:y}  = \dfrac{\partial \:}{\partial \:y} (y +  {xy}^{2} )

\rm :\implies\:\dfrac{\partial \:M}{\partial \:y}  = 1 + 2xy -  - (1)

Now,

  • Consider,

\rm :\longmapsto\:\dfrac{\partial \:N}{\partial \:x}  = \dfrac{\partial \:}{\partial \:x} (x -  {yx}^{2} )

\rm :\implies\:\dfrac{\partial \:N}{\partial \:x}  = 1 - 2xy -  - (2)

  • So, from equation (1) and equation (2), we concluded

\rm :\longmapsto\:\dfrac{\partial \:M}{\partial \:y}   \ne \: \dfrac{\partial \:N}{\partial \:x}

So,

  • Given Differential equation is not Exact Differential Equation.

  • To solve the given Differential equation, we use inspection method

The given Differential equation can be rewritten as

\rm :\longmapsto\:ydx +  {xy}^{2}dx + xdy -  {yx}^{2}dy = 0

\rm :\longmapsto\:(ydx + xdy) + xy(ydx - xdy) = 0

\rm :\longmapsto\:d(xy) + xy(ydx - xdy) = 0

 \:  \:  \boxed{ \bf \: Divide \: whole \: equation \: by \:  {x}^{2} {y}^{2}  }

\rm :\longmapsto\:\dfrac{d(xy)}{ {(xy)}^{2} }  + \dfrac{ydx - xdy}{xy}  = 0

\rm :\longmapsto\:\dfrac{d(xy)}{ {(xy)}^{2} }  + \dfrac{ydx}{xy}  - \dfrac{xdy}{xy}  = 0

\rm :\longmapsto\:\dfrac{d(xy)}{ {(xy)}^{2} }  + \dfrac{dx}{x}  - \dfrac{dy}{y}  = 0

Now, on integrating both

\rm :\longmapsto\:  \int \: (\dfrac{d(xy)}{ {(xy)}^{2} }  +  \int\dfrac{dx}{x}  - \int \dfrac{dy}{y}  = 0

\rm :\longmapsto\: -  \: \dfrac{1}{xy}  +  log(x)  -  log(y)  = c

\boxed{ \bf \:  \because \:  \int\dfrac{dx}{ {x}^{2}  } =  - \dfrac{1}{x}  + c \:   \: \: and \:  \:  \:  \int\dfrac{dx}{x}   =  log(x)  + c}

\bf\implies \: log \bigg(\dfrac{x}{y}  \bigg)  = c + \dfrac{1}{xy}

Answered by shadowsabers03
9

We are given to solve the differential equation,

\longrightarrow(1+xy)y\ dx+(1-xy)x\ dy=0\quad\quad\dots(1)

Let,

  • x=\dfrac{1}{u}
  • dx=-\dfrac{1}{u^2}\ du

and,

  • y=\dfrac{1}{v}
  • dy=-\dfrac{1}{v^2}\ dv

Then (1) becomes,

\longrightarrow-\left(1+\dfrac{1}{uv}\right)\dfrac{1}{v}\cdot\dfrac{1}{u^2}\ du-\left(1-\dfrac{1}{uv}\right)\dfrac{1}{u}\cdot\dfrac{1}{v^2}\ dv=0

\longrightarrow\left(1+\dfrac{1}{uv}\right)\dfrac{1}{u}\ du+\left(1-\dfrac{1}{uv}\right)\dfrac{1}{v}\ dv=0

\longrightarrow\left(\dfrac{uv+1}{uv}\right)\dfrac{1}{u}\ du+\left(\dfrac{uv-1}{uv}\right)\dfrac{1}{v}\ dv=0

\longrightarrow\left(uv+1\right)\dfrac{1}{u}\ du+\left(uv-1\right)\dfrac{1}{v}\ dv=0

\longrightarrow v\ du+\dfrac{1}{u}\ du+u\ dv-\dfrac{1}{v}\ dv=0

\longrightarrow v\ du+u\ dv+\dfrac{1}{u}\ du-\dfrac{1}{v}\ dv=0

\longrightarrow d(uv)+\dfrac{1}{u}\ du-\dfrac{1}{v}\ dv=0

Now integrating,

\displaystyle\longrightarrow\int d(uv)+\int\dfrac{1}{u}\ du-\int \dfrac{1}{v}\ dv=C

\displaystyle\longrightarrow uv+\log|u|-\log|v|=C

\displaystyle\longrightarrow uv+\log\left|\dfrac{u}{v}\right|=C

Undoing substitutions x=\dfrac{1}{u} and y=\dfrac{1}{v},

\displaystyle\longrightarrow\underline{\underline{\dfrac{1}{xy}+\log\left|\dfrac{y}{x}\right|=C}}


amansharma264: Good
Similar questions