Math, asked by anmolbouk44, 2 months ago

1. y =12x^5 +3x^4+ 7x³+x² -9x
differesitation​

Answers

Answered by mathdude500
2

\large\underline{\bold{Given \:Question - }}

Differentiate with respect to x,

\rm :\longmapsto\:y =  {12x}^{5} +  {3x}^{4} +  {7x}^{3} +  {x}^{2} - 9x

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{ \bf \: \dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1}}

\boxed{ \bf \: \dfrac{d}{dx} x = 1}

\boxed{ \bf \: \dfrac{d}{dx} k = 0}

\boxed{ \bf \: \dfrac{d}{dx} k \: f(x) = k \: \dfrac{d}{dx}f(x)}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  {12x}^{5} +  {3x}^{4} +  {7x}^{3} +  {x}^{2} - 9x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx}( {12x}^{5} +  {3x}^{4} +  {7x}^{3} +  {x}^{2} - 9x)

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{d}{dx}{12x}^{5}+\dfrac{d}{dx}{3x}^{4}+\dfrac{d}{dx}{7x}^{3}+\dfrac{d}{dx}{x}^{2}-\dfrac{d}{dx}9x

\rm :\longmapsto\:\dfrac{dy}{dx} =12\dfrac{d}{dx}{x}^{5}+3\dfrac{d}{dx}{x}^{4}+7\dfrac{d}{dx}{x}^{3}+\dfrac{d}{dx}{x}^{2}-9\dfrac{d}{dx}x

\rm :\longmapsto\:\dfrac{dy}{dx} = {12(5)x}^{5 - 1} + 3(4) {x}^{4 - 1} + 7(3) {x}^{3 - 1} +  {2x}^{2 - 1} - 9

\rm :\longmapsto\:\dfrac{dy}{dx} = {60x}^{4} +12{x}^{3} +21{x}^{2}+{2x}-9

Additional Information :-

\boxed{ \bf \: \dfrac{d}{dx} sinx = cosx}

\boxed{ \bf \: \dfrac{d}{dx}cosx = -  \: sinx}

\boxed{ \bf \: \dfrac{d}{dx}tanx =  {sec}^{2}x}

\boxed{ \bf \: \dfrac{d}{dx}cotx =  { - \:  cosec}^{2}x}

\boxed{ \bf \: \dfrac{d}{dx} secx = secx \: tanx}

\boxed{ \bf \: \dfrac{d}{dx}cosecx = -  \:  cosecx \: tanx}

Similar questions