Math, asked by udaypawar33791, 8 months ago

1/y + 4) ( 1/y + 9 ) = 1/ y^2 + ______ + 36 *​

Answers

Answered by gugan64
17

Answer:

 \huge \sf \underline{ \ given\: : }

 \bf \:(  \frac{1}{y}  + 4)( \frac{1}{y}  + 9)

\huge \sf \underline{ \ identity \: used \: : }

  \bf(x + a)(x +b )

 \bf \to( {x})^{2}  + (a + b)x + (ab)

\huge \sf \underline{ \  solution \: : }

 \sf \to { \frac{1}{y} }^{2}  +  \frac{1}{y} (4 + 9) + (4  \times 9)

 \sf \to  { \frac{1}{y} }^{2}  +  \frac{1}{y} (13) + 36

 \sf \to  { (\frac{1}{y} })^{2}  +  \frac{13}{y}  + 36

 \sf \to {\underline   { \frac{1}{y} }^{2}  + { {\frac{13}{y} }}} + 36

  \bf\therefore \: the \: number \: is \: ( \frac{13}{y} )

\purple{\sf \underline{  additional \:information  \: : }}

  \blue \bull\sf( {x + y})^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

\blue \bull\sf( {x  - y})^{2}  =  {x}^{2}   -  2xy +  {y}^{2}

\blue \bull\sf(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

\blue \bull \sf(x + a)(x +b ) =  {x}^{2}  + x(a + b ) + ab

  • Please mark as brainliest follow me

Step-by-step explanation:

Similar questions