Math, asked by valeskavaz13, 1 year ago

1/y+z+1/z+x+1/x+y=1 andx+y+z=4 Prove that x/y+z+y/z+x+1/x+y=1​

Answers

Answered by IamIronMan0
1

Answer:

Since

x + y + z = 4

Substitute

 \frac{1}{4} (x + y + z)  = 1

In first expression ' s numerators .

 \frac{1}{4}  .\frac{x +( y + z)}{y + z}  +  \frac{1}{4}  .\frac{y +( x + z)}{x + z}  +  \frac{1}{4}  .\frac{(x +y )+ z}{x + y}  = 1 \\  \\  \frac{x}{y + z}  +  \frac{y + z}{y + z}  + \frac{y}{x + z}  +  \frac{x+ z}{x + z}  + \frac{z}{x+ y}  +  \frac{x+ y}{x + y}  = 4 \\  \\ \frac{x}{y + z}   + 1 \frac{y }{x + z}   + 1+  \frac{z}{x + y}  + 1 = 4 \\ \\ \frac{x}{y + z}   +  \frac{y }{x + z}  +  \frac{z}{x + y}  + 3  =  4 \\  \\ \frac{x}{y + z}   +  \frac{y }{x + z}  +  \frac{z}{x + y}  = 4 - 3 = 1

Similar questions