Math, asked by sonu05111996, 1 year ago

1) यदि 3x और x-6° न्यूनकोण हों तथा sin 3x = cos (x-6°) तो सिद्ध कीजिए कि
x-24x.​

Answers

Answered by rishu6845
1

Answer:

x = 24°

Step-by-step explanation:

Given---> 3x° and (x - 6 )° are acute

angles and

Sin 3 x = Cos ( x - 6° )

To prove ---> x = 24°

Proof ---> Sin 3x = Cos ( x - 6° )

We know that

Cos ( 90° - A ) = Sin A

Applying it here

Cos ( 90° - 3 x ) = Cos ( x - 6° )

=> 90° - 3 x = x - 6°

=> - 3 x - x = - 6° - 90°

=> - 4 x = - 96

=> 4 x = 96

=> x = 96 / 4

=> x = 24

Additional information--->

1) Sin ( 90° -A ) = Cos A

2) Cos ( 90° - A ) = SinA

3) tan ( 90° - A ) = Cot A

4) Cot ( 90° - A ) = tan A

5) Sec ( 90° - A ) = Cosec A

6) Cosec ( 90° - A ) = SecA

Answered by Aɾꜱɦ
19

<font color =“orange”>

{ \huge \bf{ \mid{ \overline{ \underline{Answer}}} \mid}}

<body bgcolor= “purple” ><fontcolor=“white”>

x=24°

#answerwithquality #bal

Similar questions