1) यदि 3x और x-6° न्यूनकोण हों तथा sin 3x = cos (x-6°) तो सिद्ध कीजिए कि
x-24x.
Answers
Answer:
x = 24°
Step-by-step explanation:
Given---> 3x° and (x - 6 )° are acute
angles and
Sin 3 x = Cos ( x - 6° )
To prove ---> x = 24°
Proof ---> Sin 3x = Cos ( x - 6° )
We know that
Cos ( 90° - A ) = Sin A
Applying it here
Cos ( 90° - 3 x ) = Cos ( x - 6° )
=> 90° - 3 x = x - 6°
=> - 3 x - x = - 6° - 90°
=> - 4 x = - 96
=> 4 x = 96
=> x = 96 / 4
=> x = 24
Additional information--->
1) Sin ( 90° -A ) = Cos A
2) Cos ( 90° - A ) = SinA
3) tan ( 90° - A ) = Cot A
4) Cot ( 90° - A ) = tan A
5) Sec ( 90° - A ) = Cosec A
6) Cosec ( 90° - A ) = SecA
x=24°
#answerwithquality #bal