Math, asked by vanshikaarora1912, 7 months ago

10 . ਉਸ ਸਮਕੋਣ ਤ੍ਰਿਭੁਜ ਦਾ ਖੇਤਰਫਲ ਪਤਾ ਕਰੋ
ਜਿਸ ਦੀਆਂ ਦੋ ਭੁਜਾਵਾਂ 24 ਸੈ.ਮੀ ਅਤੇ 7 ਸੈ.ਮੀ ਹਨ
ਉਸ ਦਾ ਪਰਿਮਾਪ 56 ਸੈ.ਮੀ ਹੈ। Find the area
of a right triangle whose two sides
are 24cm and 7cm and the perimeter
is 56cm. ਧਨ ਜਸਲੀ ਕਿ ਨਾ ਖੇਲਰ ਬਾਰ
ਲਵੇਂ ਕਿਸੀ ਵੀ ਥਾਂ 24 ਜੈਸੀ ਮੀਟ 7 ਸੈਸੀ ਸੈਂ
ਚਲੀ ਧਉਸਾਧ 56 ਸੈਸੀ ਫੈ।
( 4 ਹੈ ਪੀ2 cm2 ਜੈਸੀ
ਹੈ​

Answers

Answered by bhagyashreechowdhury
0

Given:

A right triangle whose two sides  are 24cm and 7cm and the perimeter

is 56cm

To find:

Area of the triangle

Solution:

Let the third side of the right-angled triangle be "x".

We know,

\boxed{\bold{Perimeter\:of\:a \:triangle = sum\:of\:all\:3\:sides\:of\:the \:triangle}}

But we have,

Perimeter = 56 cm

∴ 24 + 7 + x = 56

⇒ 31 + x = 56

⇒ x = 56 - 31

x = 25 cm ← the third side of the triangle

So, we can conclude that,

  • The side measuring 25 cm will be the hypotenuse
  • The other two sides with the measures 24 cm & 7 cm will be the base and height or vice versa.

Also, we know,

\boxed{\bold{Area\:of\:a\:triangle\:=\:\frac{1}{2}\times base\times height }}

Now, substituting the values of base and height in the formula above, we get

The area of the right-angled triangle is,

=\:\frac{1}{2}\times base\times height }}

= \frac{1}{2}\times 24\times 7 }}

= 12 \times 7

= \bold{84 \:cm^2}

Thus, the area of the right-angled triangle is → 84 cm².

-------------------------------------------------------------------------------------

Also View:

The area of a right triangle is 6 cm². If one of the  sides containing the right angle is 4 cm, find the  length of its hypotenuse.​

https://brainly.in/question/10412301

The area of a right triangle is 100cm2. If one of the perpendicular legs is 25 cm, find the length of the other.

https://brainly.in/question/2285560

The area of a right triangle is 84cm sq. if one of its legs is 24 cm long, find the length of the other 2 sides of the triangle.

https://brainly.in/question/6997870

Answered by mysticd
0

 Let \: a , b \: and \: c \: are \: three

 sides \:of \: a \: triangle

 Given \:a = 24 \:cm , b = 7 \:cm \:and

 perimeter (P) = 56 \:cm

 \implies a + b + c = 56

 \implies 24 + 7 + c = 56

 \implies 31 + c = 56

 \implies c = 56 - 31

 \implies c = 25 \: cm

 c \gt a \: and \: c \gt b

 \blue{\therefore c \: is \: hypotenuse \: of \: the \: triangle }

 Now, \red{Area \: of \: the \: triangle }

 = \frac{1}{2} \times a \times b

 = \frac{1}{2}\times 24 \times 7

 = 12 \times 7

 = 84 \: cm^{2}

Therefore.,

 \red{ Area \: of \:the \: Triangle } \green { = 84 \:cm^{2} }

•••♪

Similar questions