Math, asked by ria298, 1 year ago

10 8. If a = 9-4V5 , find the value of a² + 1/a squre​

Answers

Answered by Dhanur
3

a=9-4√5

1/a=1/9-4√5=9+4√5 (Rationalised)

a+1/a=9-4√5+9+4√5=18

square both sides

a^2+1/a^2+2=324

a^2+1/a^2=322

hope it helps...


Dhanur: brainliest pls
ria298: yes
Answered by Anonymous
16

\bf{\large{\underline{\underline{Correct \: Question}}}}

If a = 9 - 4√5, find the value of a² + 1/a²

\bf{\large{\underline{\underline{Answer}}}}

\large{\boxed{ \tt  {a}^{2} + \dfrac{1}{a^2} = 322}}

\bf{\large{\underline{\underline{Explanation}:-}}}

Given :- a = 9 - 4√5

To find :- a² + 1/a²

Solution :-

\tt a = 9 - 4 \sqrt{5}

First find the value of 1/a

\tt  \dfrac{1}{a} = \dfrac{1}{9 - 4 \sqrt{5} }

Rationalise the denominator

The rationalising factor of 9 - 4√5 is 9 + 4√5. So multiply both numerator and denominator by rationalising factor

\tt =  \dfrac{1}{9 - 4 \sqrt{5} } \times  \dfrac{9 + 4 \sqrt{5} }{9 + 4 \sqrt{5} }

\tt =  \dfrac{9 + 4 \sqrt{5} }{ {9}^{2} -  {(4 \sqrt{5})}^{2} }

[Since (x + y)(x - y) = x² - y²]

\tt =  \dfrac{9 + 4 \sqrt{5} }{81 - 16(5)}

\tt =  \dfrac{9 + 4 \sqrt{5} }{81 - 80}

\tt =  \dfrac{9 + 4 \sqrt{5} }{1}

\tt = 9 + 4 \sqrt{5}

\tt \dfrac{1}{a} = 9 + 4 \sqrt{5}

Now find the value of a + 1/a

\tt a +  \dfrac{1}{a} = 9 - 4 \sqrt{5} + (9 + 4 \sqrt{5})

\tt a +  \dfrac{1}{a} = 9\cancel{ - 4 \sqrt{5}} + 9 \cancel{ + 4 \sqrt{5}}

\tt a +  \dfrac{1}{a} = 9+ 9

\tt a +  \dfrac{1}{a} = 18

Squaring on both sides

\tt  {(a +  \dfrac{1}{a})}^{2} =  {(18)}^{2}

We know that (x + y)² = x² + y² + 2xy

Here x =.a, y = 1/a

By substituting the values in the identity we have

\tt  {a}^{2} + {( \dfrac{1}{a})}^{2} + 2(\cancel{a})( \dfrac{1}{\cancel{a}}) = 324

\tt  {a}^{2} + \dfrac{1}{a^2}+ 2= 324

\tt  {a}^{2} + \dfrac{1}{a^2} = 324 - 2

\tt  {a}^{2} + \dfrac{1}{a^2} = 322

\Huge{\boxed{ \tt  {a}^{2} + \dfrac{1}{a^2} = 322}}

Similar questions
Math, 1 year ago