Math, asked by kusumchangeriwal, 2 months ago

10,800 for 3 years at 12 1/2 % per annum compounded annualy
(pls do not use SI

Answers

Answered by itscandycrush
8

Given:-

  • Principal = ₹10800
  • Rate = 12.5% per annum
  • Time = 3 years

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To Find:-

  • Compound Interest

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

★Formula Used:-

▪︎\bf{Amount = Principal× {(1+ \dfrac{Rate}{100})}^{time}}

\bf{▪︎Compound\ Interest = Amount- Principal}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Finding Amount

\tt{Amount = Principal×{(1+ \dfrac{Rate}{100})}^{time}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Putting given values in formula:-

\tt{Amount = 10800 × {(1+ \dfrac{12.5}{100})}^{3}}

\tt{= 10800 × {(1 + \dfrac{12.5}{100})}^{3}}

\tt{= 10800 × {(1+0.125)}^{3}}

\tt{= 10800 × {1.125}^{3}}

\tt{=10800 × 1.423828125}

\tt{= ₹15377.34375}

\boxed{\bf{\purple{\therefore Amount = ₹15377.34375}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Finding Compound Interest

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\tt{Compound\ Interest = Amount- Principal}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Putting given value in formula:-

\tt{Compound\ Interest = 15377.34375 - 10800}

\tt{Compound\ Interest = ₹4,577.34375}

\boxed{\bf{\purple{\therefore Compound\ Interest= ₹4577.35}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Answer:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Compound Interest on the principal 600 at the rate of 12.5% in 3 years is ₹4577.35.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Answered by ItzBrainlyBeast
27

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{✯\; Given :-}}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Principal ( P ) = ₹ 10,800}

\qquad\tt{:}\longrightarrow\large\textsf{Rate Of Interest ( R ) = 12.5 \% p.a. }

\qquad\tt{:}\longrightarrow\large\textsf{Time ( n ) = 3 year's}

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{✯\; To \; \; Find :-}}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Compound Interest = ?}

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{✯\; Formula :-}}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{purple}{ Amount = P × $\left(1 + \cfrac{\large\textsf\textcolor{purple}{R}}{\large\textsf\textcolor{purple}{100}}\right)^{\large\textsf\textcolor{purple}{n}}$}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{purple}{C.I. = Amount - Principal }}

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{✯\; Solution :-}}}

\large\textsf{                                                               }

  • First we have to calculate the Amount :-

\large\textsf{                                                               }

\qquad\large\textsf{Amount = P × $\left(1 + \cfrac{\large\textsf{R}}{\large\textsf{100}}\right)^{\large\textsf{n}}$}\\\\\\\qquad\large\textsf{ = 10,800 × $\left(1 + \cfrac{\large\textsf{12.5}}{\large\textsf{100}}\right)^{\large\textsf{3}}$}\\\\\\\qquad\large\textsf{= 10,800 × ( 1 + 0.125)³}\\\\\\\qquad\large\textsf{= 10,800 × ( 1.125)³}\\\\\\\qquad\large\textsf{= 10,800 × 1.423828125 }\\\\\\\qquad\boxed{\large\textsf\textcolor{red}{∴ Amount = 15,377.34375}}

\large\textsf{                                                               }

  • Now let's calculate Compound Interest :-

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Compound Interest = Amount - Principal }\\\\\\\qquad\large\textsf{= 15,377.34375 - 10,800}\\\\\\\qquad\boxed{\large\textsf\textcolor{red}{∴Compound Interest = ₹ 4577.35}}\\\\\\\large\textsf{                                                               }

The Compound Interest of the given Amount is = 4577.35

\large\textsf{                                                               }

Similar questions