Physics, asked by aashu5666, 10 months ago

о со особо охоор
10. A 1 kg mass falls from a height of 10 m into a large box filled with sand. What is the speed of the mass just
before hitting the box? What is its kinetic energy?
The mass travels 2 cm into the sand before coming to rest. What is the average retarding force of sand?
[Ars: 14 m S-1, 98 J, 4900 N]​

Answers

Answered by nksharma1209
1

Answer:

Explanation:

Hey, here's your answer attached.

Attachments:
Answered by ShivamKashyap08
5

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

  • Height (h) = 10m.
  • Mass of body(m) = 1 kg .
  • Distance travelled in sand = 2 cm = 0.02 cm.

\huge{\bold{\underline{Explanation:-}}}

\rule{300}{1.5}

By Conservation of energy,

\large{\boxed{ \text{ Increase  in  Kinetic energy = Decrease  in Potential energy}}}

I.e.

\large{\tt \leadsto \uparrow Kinetic \: energy = \downarrow Potential \: energy}

Substituting the values,

\tt \leadsto \dfrac{1}{2}mv^2 = mgh \\ \tt \leadsto \dfrac{1}{2}\cancel{m}v^2 = \cancel{m}gh \\ \tt \leadsto \dfrac{1}{2}.v^2 = gh \\ \tt \leadsto v^2 = 2gh \\ \tt \leadsto v = \sqrt{2gh} \\ \text{Substituting the values} \\ \tt \leadsto v = \sqrt{2 \times 10 \times 10} \\ \tt \leadsto v = \sqrt{200} \\ \tt \leadsto v = 10 \sqrt{2} \\ \text{As we know  value i.e. 1.414} \\ \tt \leadsto v = 10 \times 1.414

\huge{\boxed{\boxed{\tt v = 14.14 \: m/s}}}

So, the velocity of the body is 14.14 m/s.

\rule{300}{1.5}

\rule{300}{1.5}

From The Kinetic energy formula,

\large{\boxed{\tt K.E = \dfrac{1}{2}mv^2}}

Substituting the values ,

\tt \leadsto K.E = \dfrac{1}{2}mv^2 \\ \tt \leadsto K.E = \dfrac{1}{2} \times 1 \times (14.1)^2 \\ \text{The velocity is taken from the above relation} \\ \tt \leadsto K.E = \dfrac{1}{2} \times 1 \times 196 \\ \tt \leadsto K.E = \dfrac{1}{\cancel{2}} \times 1 \times \cancel{196} \\ \tt \leadsto K.E = 1 \times 98 \:

\huge{\boxed{\boxed{\tt K.E = 98 \: J}}}

So, the Kinetic energy of the body is 98 Joules.

\rule{300}{1.5}

\rule{300}{1.5}

Now, By work - Energy theorem,

\large{\boxed{\tt W = \dfrac{1}{2}mv^2}}

Substituting the values,

\tt \leadsto F.s = \dfrac{1}{2} mv^2 \\ \underline{\text{As Work done = F.s}} \\  \text{Substituting the values} \\ \tt \leadsto F \times 0.02 = \dfrac{1}{2} \times 1 \times (14)^2  \\ \tt \leadsto F \times 0.02 = 98 \\ \tt \leadsto F = \dfrac{98}{0.02} \\ \\  \tt \leadsto F = \dfrac{98 \times 100}{2} \\ \tt \leadsto F = \dfrac{\cancel{98} \times 100}{\cancel{2}} \\ \tt \leadsto F = 49 \times 100  \:

\huge{\boxed{\boxed{\tt F = 4900 \: N}}}

So, the Force acting on the body is 4900N.

\rule{300}{1.5}

Similar questions