Physics, asked by kumariaparna815, 5 months ago

10. A particle starts from rest from origin and moves
along a parabolic path whose equation is y = x²
in the presence of a number of forces. One of
the forces acting on the particle is
F = (xi - 4zk)N . Find work done by this force F
when the particle moves from origin to x = 2m.
(2) 2 J
(1) Zero
(3) 1 J
(4) None​

Answers

Answered by mithun890
0

Solution:

  • Here they gave that, a parabolic path, F=(Xi-4zk)N ,  

        x_{i} =0(rest)-x_{f} =2

  • By using the basic formula,

                             W=\int\limits^a _b {f} \, dx    

  • where,

            a= the final distance

                =2m

          b= initial(rest)

             =0

  • sub all the values in the formula

           W=\int\limits^2 _0 {x} \, dx

                =\int\limits^2_0  [\frac{x^{2} }{2} ]    

                =\int\limits^2_0 [\frac{x_{f} }{2} -\frac{x_{i} }{2} ]

                =[\frac{2^{2} }{2} -\frac{o^{2} }{2} ]

                =[\frac{4}{2} -0]

                =2j

Therefore the answer is 2joules.

#SPJ3

Similar questions