Physics, asked by saif4859, 1 month ago

10. An object of size 2cm is placed at distance 20 cm from a concave
mirror of focal length 30 cm. At what distance a screen must
placed to get a sharp and clear image and find the size of the
image.​

Answers

Answered by manoranjanphy1
0

Explanation:

M = F/( F - U)

sign convention,

M = - 30 / ( -30 +20)

= - 30 / ( -10)

= 3

M = 3

then,

M =size of image / size of object =3

3 = image /2

size of image = 6cm

M = - V/U

6 = V/ 20

V = 120 cm.

Answered by SachinGupta01
5

\bf \: \underline{Given} :

\sf \: \implies \: h_o = 2 \: cm

\sf \:\implies \: u = - 20 \: cm

\sf \:\implies \: f =  - 30 \: cm

\bf \: \underline{To \:  find } :

\sf \:\implies \: image \:  distance (v)

\sf \:\implies \: height  \: of \:  image \: ( v_i)

\bf \: \underline{\underline{Solution } }

\:  \implies \boxed{ \pink{\sf\dfrac{1}{f} =  \: \dfrac{1}{v} + \dfrac{1}{u} }}

\:  \implies \sf\dfrac{1}{ - 30} =  \: \dfrac{1}{v} + \dfrac{1}{ - 20}

\:  \implies \sf\dfrac{1}{ - 30} +  \dfrac{1}{20} =  \: \dfrac{1}{v}

\:  \implies \sf\dfrac{ - 2 + 3}{ 60}  =  \: \dfrac{1}{v}

 \implies \sf\dfrac{1}{ 60}  =  \: \dfrac{1}{v}

\red{ \implies \sf v = 60 }

So, the screen must be placed at the distance of 60 cm from the mirror.

\implies \boxed{ \pink{\sf \: m = \dfrac{ - v}{u} }}

\implies \sf \: m = \dfrac{ - 60}{ - 20}

\implies \sf \: m = \dfrac{ \!\!\!- \!\!\!\not6\!\!\!\not0}{ - \!\!\!\not2\!\!\!\not0}

 \red{\implies \sf \: m = 3}

So, the magnification (m) is 3

\implies \boxed{ \pink{\sf \: m = \dfrac{h_i}{h_o} }}

\implies \sf \: 3 = \dfrac{h_i}{2}

\implies \sf h_i  = 3  \times 2

 \red{\implies \sf h_i  =6 \: cm}

Hence, the height of the image is 6 cm

________________________________

\sf \: h_o = Height \: of \: object

 \sf \: h_i = Height \: of \: image

 \sf \: u = Object \: distance \: from \: mirror

 \sf \: v = image \: distance \: from \: mirror

\sf \: R = Radius \: of \: curvature

\sf \: f = focal \: length \: of \: mirror

Similar questions