10. CD and GH are respectively the bisectors
of ZACB and Z EGF such that D and H lie
on sides AB and FE of A ABC and A EFG
respectively. If A ABC - AFEG, show that:
CD AC
(1) GH
FG
(ii) ADCB - AHGE
(iii) ADCA - AHGF
Answers
Answered by
43
Given, CD and GH are respectively the bisectors of ∠ACB and ∠EGF such that D and H lie on sides AB and FE of ΔABC and ΔEFG respectively.
(i) From the given condition,
ΔABC ~ ΔFEG.
∴ ∠A = ∠F, ∠B = ∠E, and ∠ACB = ∠FGE
Since, ∠ACB = ∠FGE
∴ ∠ACD = ∠FGH (Angle bisector)
And, ∠DCB = ∠HGE (Angle bisector)
In ΔACD and ΔFGH,
∠A = ∠F
∠ACD = ∠FGH
∴ ΔACD ~ ΔFGH (AA similarity criterion)
⇒CD/GH = AC/FG
(ii) In ΔDCB and ΔHGE,
∠DCB = ∠HGE (Already proved)
∠B = ∠E (Already proved)
∴ ΔDCB ~ ΔHGE (AA similarity criterion)
(iii) In ΔDCA and ΔHGF,
∠ACD = ∠FGH (Already proved)
∠A = ∠F (Already proved)
∴ ΔDCA ~ ΔHGF (AA similarity criterion)
Attachments:
Similar questions
Math,
6 months ago
Geography,
6 months ago
Math,
1 year ago
Biology,
1 year ago
Political Science,
1 year ago