Math, asked by renz26, 11 months ago

10 example of sets of mathematics

Answers

Answered by tejaswini2224
1

1.Let A and B be two finite sets such that n(A) = 20, n(B) = 28 and n(A ∪ B) = 36, find n(A ∩ B).

Solution: 

Using the formula n(A ∪ B) = n(A) + n(B) - n(A ∩ B). 

then n(A ∩ B) = n(A) + n(B) - n(A ∪ B) 

                     = 20 + 28 - 36 

                     = 48 - 36 

                     = 12 

2. If n(A - B) = 18, n(A ∪ B) = 70 and n(A ∩ B) = 25, then find n(B).

Solution: 

Using the formula n(A∪B) = n(A - B) + n(A ∩ B) + n(B - A) 

                                 70 = 18 + 25 + n(B - A) 

                                 70 = 43 + n(B - A) 

                         n(B - A) = 70 - 43 

                         n(B - A) = 27 

Now n(B) = n(A ∩ B) + n(B - A) 

               = 25 + 27 

               = 52 

3. In a group of 60 people, 27 like cold drinks and 42 like hot drinks and each person likes at least one of the two drinks. How many like both coffee and tea? 

Solution: 

Let A = Set of people who like cold drinks. 

     B = Set of people who like hot drinks. 

Given 

(A ∪ B) = 60            n(A) = 27       n(B) = 42 then;

n(A ∩ B) = n(A) + n(B) - n(A ∪ B) 

            = 27 + 42 - 60 

            = 69 - 60 = 9 

            = 9 

Therefore, 9 people like both tea and coffee. 

4.There are 35 students in art class and 57 students in dance class. Find the number of students who are either in art class or in dance class.

• When two classes meet at different hours and 12 students are enrolled in both activities. 

• When two classes meet at the same hour. 

Solution: 

n(A) = 35,       n(B) = 57,       n(A ∩ B) = 12 

(Let A be the set of students in art class. 

B be the set of students in dance class.) 

(i) When 2 classes meet at different hours n(A ∪ B) = n(A) + n(B) - n(A ∩ B) 

                                                                          = 35 + 57 - 12 

                                                                          = 92 - 12 

                                                                          = 80 

(ii) When two classes meet at the same hour, A∩B = ∅ n (A ∪ B) = n(A) + n(B) - n(A ∩ B) 

                                                                                              = n(A) + n(B) 

                                                                                              = 35 + 57 

                                                                                              = 92

5.. In a group of 100 persons, 72 people can speak English and 43 can speak French. How many can speak English only? How many can speak French only and how many can speak both English and French?

Solution: 

Let A be the set of people who speak English. 

B be the set of people who speak French. 

A - B be the set of people who speak English and not French. 

B - A be the set of people who speak French and not English. 

A ∩ B be the set of people who speak both French and English. 

Given, 

n(A) = 72       n(B) = 43       n(A ∪ B) = 100 

Now, n(A ∩ B) = n(A) + n(B) - n(A ∪ B) 

                     = 72 + 43 - 100 

                     = 115 - 100 

                     = 15 

6.. In a competition, a school awarded medals in different categories. 36 medals in dance, 12 medals in dramatics and 18 medals in music. If these medals went to a total of 45 persons and only 4 persons got medals in all the three categories, how many received medals in exactly two of these categories?

Solution: 

Let A = set of persons who got medals in dance. 

B = set of persons who got medals in dramatics. 

C = set of persons who got medals in music. 

Given, 

n(A) = 36                              n(B) = 12       n(C) = 18 

n(A ∪ B ∪ C) = 45       n(A ∩ B ∩ C) = 4 

We know that number of elements belonging to exactly two of the three sets A, B, C 

= n(A ∩ B) + n(B ∩ C) + n(A ∩ C) - 3n(A ∩ B ∩ C) 

= n(A ∩ B) + n(B ∩ C) + n(A ∩ C) - 3 × 4       ……..(i) 

n(A ∪ B ∪ C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(B ∩ C) - n(A ∩ C) + n(A ∩ B ∩ C) 

Therefore, n(A ∩ B) + n(B ∩ C) + n(A ∩ C) = n(A) + n(B) + n(C) + n(A ∩ B ∩ C) - n(A ∪ B ∪ C) 

From (i) required number 

= n(A) + n(B) + n(C) + n(A ∩ B ∩ C) - n(A ∪ B ∪ C) - 12 

= 36 + 12 + 18 + 4 - 45 - 12 

= 70 - 57 

= 13 

7.. Each student in a class of 40 plays at least one indoor game chess, carrom and scrabble. 18 play chess, 20 play scrabble and 27 play carrom. 7 play chess and scrabble, 12 play scrabble and carrom and 4 play chess, carrom and scrabble. Find the number of students who play (i) chess and carrom. (ii) chess, carrom but not scrabble.

Solution: 

Let A be the set of students who play chess 

B be the set of students who play scrabble 

C be the set of students who play carrom 

Therefore, We are given n(A ∪ B ∪ C) = 40, 

n(A) = 18,         n(B) = 20         n(C) = 27, 

n(A ∩ B) = 7,     n(C ∩ B) = 12    n(A ∩ B ∩ C) = 4 

We have 

n(A ∪ B ∪ C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(B ∩ C) - n(C ∩ A) + n(A ∩ B ∩ C) 

Therefore, 40 = 18 + 20 + 27 - 7 - 12 - n(C ∩ A) + 4 

40 = 69 – 19 - n(C ∩ A) 

40 = 50 - n(C ∩ A) n(C ∩ A) = 50 - 40 

n(C ∩ A) = 10 

Therefore, Number of students who play chess and carrom are 10. 

Also, number of students who play chess, carrom and not scrabble. 

= n(C ∩ A) - n(A ∩ B ∩ C) 

= 10 – 4 

= 6

hope it will help you....!!!

plzz mark as BRAINLIEST!!!!!


hardy0077: hii
tejaswini2224: hii
hardy0077: ur so cute
tejaswini2224: thank you :)
tejaswini2224: plzz follow me
Similar questions