10. Find measure of the angles A and B. if cos(A-B)
=
and sin(A + B)
2
Answers
Answered by
1
Answer:
We know that
sin60^{\circ}=\frac{\sqrt{3}}{2}sin60
∘
=
2
3
cos30^{\circ}=\frac{\sqrt{3}}{2}cos30
∘
=
2
3
Using the values
cos(A-B)=cos30^{\circ}cos(A−B)=cos30
∘
A-B=30A−B=30 ...(1)
sin(A+B)=sin60^{\circ}sin(A+B)=sin60
∘
A+B=60A+B=60 ...(2)
Adding equation (1) and (2) we get
2A=902A=90
A=45^{\circ}A=45
∘
Substitute the value of A in equation (1)
45-B=3045−B=30
B=45-30=15^{\circ}B=45−30=15
∘
Hence, the measure of angles
A=45^{\circ}A=45
∘
and B=15^{\circ}B=15
∘
Similar questions
Computer Science,
2 months ago
Math,
2 months ago
English,
4 months ago
Math,
4 months ago
Math,
10 months ago