Math, asked by Itzheartcracer, 1 month ago

10. Find the derivative of cos x from first principle

Answers

Answered by Vikramjeeth
16

Step-by-step explanation:

Here,

f(x) =cos x

we have to find the f'(x)

then

f'(x) = \lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h} \\

→ f(x) = cos x

→ f(x+h) = cos (x+h)

Putting the value we get

f'(x) = \lim_{h\rightarrow 0}\frac{cos (x+h)-cos(x)}{h}</p><p></p><p><strong>Using</strong><strong> the</strong><strong> formula</strong></p><p></p><p>[tex]cos A - cos B = - 2 sin(\frac{A+B}{2}) sin (\frac{A-B}{2}) \\

f'(x) = \lim_{h\rightarrow 0}\frac{-2 sin (\frac{x+x+h}{2}). sin(\frac{x+h-x}{2}) }{h} \\

= \begin{gathered}\lim_{h\rightarrow 0}\frac{-2 sin (\frac{2x+h}{2}). sin(\frac{h}</p><p>{2}) }{h}\\\end{gathered}

On calculating we get,

\lim_{h\rightarrow 0}{- sin(\frac{2x+h}{2}).1} \\

\lim_{h\rightarrow 0}{- sin(\frac{2x+h}{2})} \\

= \lim_{h\rightarrow 0}{- sin(\frac{2x+0}{2})} \\

= \lim_{h\rightarrow 0}{- sin(\frac{2x}{2})} \\

Hence ,

Derivative of cos X is -sin x

Answered by mathdude500
20

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = cosx

So,

\rm :\longmapsto\:f(x + h) = cos(x + h)

By using, Definition of First Principle, we have

\rm :\longmapsto\:\boxed{ \tt{ \: f'(x) = \displaystyle\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \: }}

So, on substituting the values, we get

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0} \frac{cos(x + h) - cosx}{h}

We know,

\boxed{ \tt{ \: cosx - cosy =  - 2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }}

So, using this, we get

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{ - 2sin\bigg[\dfrac{x + h + x}{2} \bigg]sin\bigg[\dfrac{x + h - x}{2} \bigg]}{h}

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{ - 2sin\bigg[\dfrac{2x + h}{2} \bigg]sin\bigg[\dfrac{h}{2} \bigg]}{h}

\rm \:  =  \: - 2 \times \displaystyle\lim_{h \to 0}sin\bigg[\dfrac{2x + h}{2} \bigg] \times \displaystyle\lim_{h \to 0}\dfrac{sin\dfrac{h}{2} }{\dfrac{h}{2}  \times 2}

\rm \:  =  \: -  sin\bigg[\dfrac{2x}{2} \bigg] \times \displaystyle\lim_{h \to 0}\dfrac{sin\dfrac{h}{2} }{\dfrac{h}{2}  }

We know,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x}  = 1 \: }}

So, using this, we get

\rm \:  =  \: -  \: sinx \times 1

\rm \:  =  \: -  \: sinx

Thus,

\rm \implies\:\boxed{ \tt{ \: \dfrac{d}{dx}cosx \:  =  \:  -  \: sinx \: }}

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf 0 \\ \\ \sf sinx &amp; \sf cosx \\ \\ \sf cosx &amp; \sf  -  \: sinx \\ \\ \sf tanx &amp; \sf  {sec}^{2}x \\ \\ \sf cotx &amp; \sf  -  {cosec}^{2}x \\ \\ \sf secx &amp; \sf secx \: tanx\\ \\ \sf cosecx &amp; \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  &amp; \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx &amp; \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  &amp; \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions