Math, asked by tazyeen91, 2 months ago


10. Find the equation of the circle passing through the points (4.1) and (6.5) and whose centre is on the line
(2.3) and (-1.1) and whose centre is on the line​

Answers

Answered by mathdude500
4

Solution :-

Let assume that centre of circle be (h, k) and radius be 'r'.

So,

Equation of circle is

\rm :\longmapsto\: {(x - h)}^{2} +  {(y - k)}^{2} =  {r}^{2} -  -  - (1)

Now, equation (1) passes through (4, 1)

\rm :\longmapsto\: {(4 - h)}^{2} +  {(1 - k)}^{2} =  {r}^{2} -  -  - (2)

Also, equation (1) passes through (6, 5),

\rm :\longmapsto\: {(6 - h)}^{2} +  {(5 - k )}^{2} =  {r}^{2} -  -  - (3)

On equating equation (3) and equation (2), we get

\rm :\longmapsto\: {(6 - h)}^{2} +  {(5 - k)}^{2} = {(4 - h)}^{2} +  {(1 - k)}^{2}

 \rm \to \: 36+{h}^{2}-12h+25+{k}^{2} - 10k= 16+{h}^{2}-8h+1+{k}^{2}-2k

\rm :\longmapsto\:61 - 12h - 10k = 17 - 8h - 2k

\rm :\longmapsto\: - 12h - 10k + 8h + 2k = 17 - 61

\rm :\longmapsto\: - 4h - 8k =  - 44

\bf\implies \:h + 2k = 11 -  -  - (4)

Now, equation of line passes through two points (2, 3) and (- 1, 1) is

\rm :\longmapsto\:y - 3 = \dfrac{1 - 3}{ - 1 - 2}(x - 2)

 \blue{ \quad\boxed{ \quad \because{ \: \bf \:y - y_1 = \dfrac{y_2-y_1}{x_2-x_1} (x-x_1) \quad}}}

\rm :\longmapsto\:y - 3 = \dfrac{ - 2}{ -3}(x - 2)

\rm :\longmapsto\:3y - 9 =  2x  -  4

\rm :\longmapsto\:2x  -  3y =  - 5

As centre (h, k) lies on the line 2x - 3y = - 5

\rm :\implies\:2h  -  3k =  - 5

\rm :\longmapsto\:2(11 - 2k)  -  3k =  - 5 \:  \: \:  \:  \:  \:   \{ \: using \: (4) \}

\rm :\longmapsto\:22 - 4k  -  3k =  - 5

\rm :\longmapsto\:22 - 7k \: =  - 5

\bf\implies \:k =  \dfrac{27}{7}

Put value of k, in equation (4), we get

\rm :\longmapsto\:h + 2(\dfrac{27}{7} ) = 11

\rm :\longmapsto\:h +  \dfrac{54}{7}  = 11

\rm :\longmapsto\:h = 11 - \dfrac{54}{7}

\rm :\longmapsto\:h = \dfrac{77 - 54}{7}

\bf\implies \:h =   \dfrac{23}{7}

Now, on substituting h and k in equation (2), we get

\rm :\longmapsto\: {(4 -  \dfrac{23}{7})}^{2} +  {(1 -  \dfrac{27}{7} )}^{2} =  {r}^{2}

\rm :\longmapsto\: {(\dfrac{28 - 23}{7})}^{2} +  {(\dfrac{7 - 27}{7} )}^{2} =  {r}^{2}

\rm :\longmapsto\: {(\dfrac{5}{7})}^{2} +  {(\dfrac{ - 20}{7} )}^{2} =  {r}^{2}

\rm :\longmapsto\: {r}^{2} = \dfrac{25}{49}  + \dfrac{400}{49}

\rm :\longmapsto\: {r}^{2} = \dfrac{400 + 25}{49}

\rm :\longmapsto\: {r}^{2} = \dfrac{425}{49}

So,

required equation of circle is obtained by substituting the values of h, k and r in equation (1), we gat

\rm :\longmapsto\: {(x - \dfrac{23}{7} )}^{2} +  {(y -  \dfrac{27}{7} )}^{2}  = \dfrac{425}{49}

\rm :\longmapsto\: {x}^{2} + \dfrac{529}{49}  -  \dfrac{46}{7}x +  {y}^{2} + \dfrac{729}{49} -  \dfrac{54}{7}y =  \dfrac{425}{49}

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  -  \dfrac{46}{7}x - \dfrac{54}{7}y  +  \dfrac{833}{49} = 0

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  -  \dfrac{46}{7}x - \dfrac{54}{7}y  +  17 = 0

\rm :\longmapsto\: {7x}^{2}  +  {7y}^{2} - 46x - 54y + 119 = 0

Similar questions