10. Find the value of 9 sec? A - 9 tan? A.
Answers
Step-by-step explanation:
ANSWER
ANSWERWe have, 9sec
ANSWERWe have, 9sec 2
ANSWERWe have, 9sec 2 A−9tan
ANSWERWe have, 9sec 2 A−9tan 2
ANSWERWe have, 9sec 2 A−9tan 2 A
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan 2
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan 2 A
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan 2 Ar=9(sec
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan 2 Ar=9(sec 2
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan 2 Ar=9(sec 2 A−tan
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan 2 Ar=9(sec 2 A−tan 2
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan 2 Ar=9(sec 2 A−tan 2 A)
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan 2 Ar=9(sec 2 A−tan 2 A)We know that
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan 2 Ar=9(sec 2 A−tan 2 A)We know thatsec
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan 2 Ar=9(sec 2 A−tan 2 A)We know thatsec 2
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan 2 Ar=9(sec 2 A−tan 2 A)We know thatsec 2 A−tan
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan 2 Ar=9(sec 2 A−tan 2 A)We know thatsec 2 A−tan 2
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan 2 Ar=9(sec 2 A−tan 2 A)We know thatsec 2 A−tan 2 A=1
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan 2 Ar=9(sec 2 A−tan 2 A)We know thatsec 2 A−tan 2 A=1Therefore,
ANSWERWe have, 9sec 2 A−9tan 2 ALet r=9sec 2 A−9tan 2 Ar=9(sec 2 A−tan 2 A)We know thatsec 2 A−tan 2 A=1Therefore,r=9×1=9
Answer:
The value of 9sec²A-9tan²A =9
Step-by-step explanation:
The value of 9sec²A-9tan²A
= 9(sec²A-tan²A)
/* By Trigonometric identity:
{sec^{2}A-tan^{2}A=1}
sec 2 A−tan 2 A=1
= 9 ×1
= 9