10. Find the value of sin 600.cos 2450-Cotet 30 +
5 cos 90°
Answers
Answered by
0
Step-by-step explanation:
We have,
\dfrac{\sin 60}{\cos ^{2}45} -\cot 30+15\cos 90
cos
2
45
sin60
−cot30+15cos90
Evaluate, \dfrac{\sin 60}{\cos ^{2}45} -\cot 30+15\cos 90
cos
2
45
sin60
−cot30+15cos90 = ?
∴ \dfrac{\sin 60}{\cos ^{2}45} -\cot 30+15\cos 90
cos
2
45
sin60
−cot30+15cos90
=\dfrac{\dfrac{\sqrt{3}}{2} }{(\dfrac{1}{\sqrt{2}})^{2} } -\sqrt{3} +15(0)=
(
2
1
)
2
2
3
−
3
+15(0)
[ ∵ \sin 60=\dfrac{\sqrt{3}}{2} ,\cos 45=\dfrac{1}{\sqrt{2}} ,\cot 30=\sqrt{3} and \cos 90=1sin60=
2
3
,cos45=
2
1
,cot30=
3
andcos90=1
=\dfrac{\dfrac{\sqrt{3}}{2} }{\dfrac{1}{2}} -\sqrt{3} +0=
2
1
2
3
−
3
+0
=\sqrt{3} -\sqrt{3}=
3
−
3
= 0
Hence, \dfrac{\sin 60}{\cos ^{2}45} -\cot 30+15\cos 90=0
cos
2
45
sin60
−cot30+15cos90=0
Similar questions
Physics,
4 months ago
Computer Science,
4 months ago
Math,
4 months ago
Biology,
8 months ago
Social Sciences,
8 months ago
History,
1 year ago
History,
1 year ago