Math, asked by yashraj590, 4 months ago

10. From a circular card sheet of radius 14 cm, two circles of radius 3.5 cm and a rectangle of length 3 cm and breadth 1cm are removed. (as shown in the adjoining figure). Find the area of the remaining sheet. (Take π = 22/7)

Answers

Answered by yashrck17
1

Answer:

1cm are removed. (as shown in the adjoining figure). Find the area of the remaining sheet. (Take π = \sf\dfrac{22}{7})

7

22

)

\bf{\underline{\underline{\orange{\red{Given:}}}}}

Given:

Radius of the circular card sheet = 14 cm

Radius of the two small circle = 3.5 cm

Length of the rectangle = 3 cm

Breadth of the rectangle = 1 cm

\bf{\underline{\underline{\pink{\purple{To\:Find:}}}}}

ToFind:

The area of remaining sheet.

\bf{\underline{\underline{\orange{\green{Solution:}}}}}

Solution:

\bf\underline{Remaining\:Area\:=\: Area\:of\: larger\: Circle}

RemainingArea=AreaoflargerCircle

{\implies}⟹ \sf{ – \:2\:×\:Area\:of\: smaller\: Circle}–2×AreaofsmallerCircle

{\implies}⟹ \sf{ – \:Area\:of\: Rectangle}–AreaofRectangle

\bf\underline{ Area\:of\: larger\: Circle}

AreaoflargerCircle

\sf{Radius\:of\: larger\: Circle\:=\:R\:=\:14 cm}RadiusoflargerCircle=R=14cm

\sf{Area\:of\: larger\: Circle\:=\:πr²}AreaoflargerCircle=πr

2

{\implies}⟹ = \sf\dfrac{22}{7}

7

22

\sf{×\:(14)²}×(14)

2

\begin{gathered}\\\end{gathered}

{\implies}⟹ = \sf\dfrac{22}{7}

7

22

\sf{×\:14\:×\:14}×14×14

\begin{gathered}\\\end{gathered}

{\implies}⟹ = \sf\dfrac{22}{7}

7

22

\sf{×\:2\:×\:14}×2×14

\begin{gathered}\\\end{gathered}

{\implies}⟹ \sf{=\: 44\:×\:14}=44×14

\begin{gathered}\\\end{gathered}

{\implies}⟹ = \sf{616\:Cm²}616Cm

2

\begin{gathered}\\\end{gathered}

\bf\underline{ Area\:of\: Smaller\: Circle}

AreaofSmallerCircle

\sf{Radius\:of\: larger\: Circle\:=\:R\:=\:3.5 cm}RadiusoflargerCircle=R=3.5cm

\sf{Area\:of\: Smaller\: Circle\:=\:πr²}AreaofSmallerCircle=πr

2

\begin{gathered}\\\end{gathered}

{\implies}⟹ = \sf\dfrac{22}{7}

7

22

\sf{×\:(3.5)²}×(3.5)

2

\begin{gathered}\\\end{gathered}

{\implies}⟹ = \sf\dfrac{22}{7}

7

22

\sf\bigg(\dfrac{35}{10}(

10

35

\sf\bigg)) ²

\begin{gathered}\\\end{gathered}

{\implies}⟹ = \sf\dfrac{22}{1}

1

22

\sf\bigg(\dfrac{7}{2}(

2

7

\sf\bigg)) ²

\begin{gathered}\\\end{gathered}

{\implies}⟹ \sf\dfrac{22}{7}

7

22

× \sf\dfrac{7}{2}

2

7

× \sf\dfrac{7}{2}

2

7

\begin{gathered}\\\end{gathered}

{\implies}⟹ \sf\dfrac{11}{7}

7

11

× \sf\dfrac{7}{1}

1

7

× \sf\dfrac{7}{2}

2

7

\begin{gathered}\\\end{gathered}

{\implies}⟹ \sf\dfrac{22}{7}

7

22

1 × 1 \sf\dfrac{7}{2}

2

7

× \sf\dfrac{77}{2}

2

77

\sf{ = \: 38.5\:cm²}=38.5cm

2

\begin{gathered}\\\end{gathered}

\bf\underline{ Area\:of\: Rectangle:}

AreaofRectangle:

\sf{Length\:of\: Rectangle\:=\:l\:=\:3cm}LengthofRectangle=l=3cm

\sf{Breadth\:of\: Rectangle\:=\:l\:×\:b}BreadthofRectangle=l×b

\sf{Area\:of\: Rectangle\:=\:l\:×\:b}AreaofRectangle=l×b

\sf{ =\:3\:×\:1}=3×1

\sf{ = \:3\:cm²}=3cm

2

\bf\underline{ Therefore:}

Therefore:

∴ Remaining Area = Area of larger Circle

– 2 × Area of Smaller Circle

– Area of Rectangle

{\implies}⟹ \sf{=\:616\:–\:2\:×}=616–2× \sf\bigg(\dfrac{77}{2}(

2

77

\sf\bigg)) – 3

\begin{gathered}\\\end{gathered}

{\implies}⟹ \sf{ =\:616\:–\:77\:–\:3}=616–77–3

\begin{gathered}\\\end{gathered}

{\implies}⟹ \sf{=\:616\:–\:80}=616–80

\begin{gathered}\\\end{gathered}

{\implies}⟹ \sf{=\:536\:=\:cm²}=536=cm

2

\begin{gathered}\\\end{gathered}

\bf{\underline{\underline{\red{\purple{∴\: Required\:Area\:is\:536\:Cm²}}}}}

∴RequiredAreais536Cm

2

Step-by-step explanation:

hope it helps.

Similar questions