10. From the adjoining sketch , calculate . (i) the length AD (ii) the area of trapezium ABCD (iii) the area of triangle BCD.
Answers
Answer:
gjfjfjchdkydludludludlud
Step-by-step explanation:
(i)
Length of DA is 9 cm
\text{Area of trapezium= }247.5 cm^2Area of trapezium= 247.5cm
2
\text{Area of triangle }=67.5 cm^2Area of triangle =67.5cm
2
Step-by-step explanation:
Given the trapezium ABCD in which parallel sides are of length 15 cm and 40 cm. Also, length of BD is 41 cm.
We have to find the
1) length of AD
As DAB is right angled triangle
∴ DB^2=DA^2+AB^2DB
2
=DA
2
+AB
2
⇒ 41^2=DA^2+40^241
2
=DA
2
+40
2
⇒ 1681-1600=DA^21681−1600=DA
2
⇒ DA=\sqrt{81}=9cmDA=
81
=9cm
2)To find area of trapezium
\text{Area of trapezium= }\frac{1}{2}\times (\text{Sum of parallel sides})\times heightArea of trapezium=
2
1
×(Sum of parallel sides)×height
=\frac{1}{2}\times (AB+CD)\times AD=
2
1
×(AB+CD)×AD
=\frac{1}{2}\times (40+15)\times 9=
2
1
×(40+15)×9
=\frac{1}{2}\times 55\times 9=247.5 cm^2=
2
1
×55×9=247.5cm
2
3) Area of triangle BCD
\text{Area of triangle ABD }=\frac{1}{2}\times base \times heightArea of triangle ABD =
2
1
×base×height
=\frac{1}{2}\times40\times 9=180 cm^2=
2
1
×40×9=180cm
2
Area of ΔBCD=247.5-180=67.5 square