Math, asked by rudradeeptaacharjee, 3 months ago


10. How many tiles whose length and breadth are 12 cm and 5 cm respectively will be needed
to fit in a rectangular region whose length and breadth are respectively:
(a) 200 cm and 144 cm
(b) 80cm and 48cm​

Answers

Answered by TRISHNADEVI
0

SOLUTION :

 \\  \\

Given :-

 \\

  • Length of a tile = 12 cm

  • Breadth of a tile = 5 cm

 \\

To Find :-

 \\

How many titles will be needed to fit in a rectangle region whose length and breadth are respectively

 \\

  • (a) 200 cm and 144 cm

  • (b) 80 cm and 48 cm

 \\

Required Formula :-

 \\

 \bigstar \:  \:  \boxed{ \bold{  \: Area \:  \:  of \:  \:  a \:  \:  Rectangle = Length \times  Breadth  \: }}

 \\

Calculation of area of a tile :-

 \\

  • Length, l = 12 cm

  • Breadth, b = 5 cm

 \\

 \sf{  \large{\therefore \:  \: Area = l  \times  b }} \:  \:  \:  \:  \:  \:   \:  \:  \\ \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \sf {\large{= 12 \times  5  \: cm {}^{2} }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf{ \large{= 60 \: cm {}^{2} }}

 \\

(a)

 \\

Calculation of the rectangular region :-

 \\

  • Length, l₁ = 200 cm

  • Breadth, b₁ = 144 cm

 \\

 \sf{ \large{ \therefore \:  \: Area = l_1 \times  b_1}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \large{ = (200  \times 144 )\:  cm {}^{2} }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \large{ =  28800 \: cm {}^{2} }} \:  \:  \:

 \\

Calculation of number of tiles required :-

 \\

 \bigstar  \:  \: \sf{No. \: \: of  \:  \: tiles =  \dfrac{Area \:  \:  of  \:  \: rectangular \:  \:  region }{Area \:  \:  of  \:  \: a \:  \:  tile} } \\  \\   \sf{ =  \dfrac{28800 \: cm {}^{2} }{60 \: cm {}^{2} }} \\  \\  \sf{ = 480} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

  • Hence, the required number of tiles needed to fit the rectangular region is 480.

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

(b)

 \\

Calculation of the rectangular region :-

 \\

  • Length, l₂ = 80 cm

  • Breadth, b₂ = 48 cm

 \\

 \sf{ \large{ \therefore \:  \: Area = l_2 \times  b_2}} \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \large{ = (80  \times 48) \:  cm {}^{2} }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \large{ =  3840 \: cm {}^{2} }} \:  \:  \:

 \\

Calculation of number of tiles required :-

 \\

 \bigstar  \:  \: \sf{No. \: \: of  \:  \: tiles =  \dfrac{Area \:  \:  of  \:  \: rectangular \:  \:  region }{Area \:  \:  of  \:  \: a \:  \:  tile} } \\  \\   \sf{ =  \dfrac{3840 \: cm {}^{2} }{60 \: cm {}^{2} }} \:  \:  \:  \\  \\  \sf{ = 64} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

  • Hence, the required number of tiles needed to fit the rectangular region is 64.

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

ANSWER :

 \\  \\

  • (a) 480 tiles will be needed whose length and breadth are 12 cm and 5 cm respectively to fit in a rectangular region whose length and breadth are 200 cm and 144 cm respectively.

  • (b) 64 tiles will be needed whose length and breadth are 12 cm and 5 cm respectively to fit in a rectangular region whose length and breadth are 80 cm and 48 cm respectively.
Answered by manojchauhanma2
2

Answer:

So, 42 tiles required for rectangular region.

Similar questions