Math, asked by lingumanikandan, 4 months ago

10. How many tiles whose length and breadth are 6 cm and 5 cm
respectively will be needed to fit in a rectangular region whose length
and breadth are respectively 90 cm and 36 cm?​

Answers

Answered by rakshitapandey1803
2

area of tiles = l*b

6*5=30cm2

area of rectangular region = 90*36

=3240 cm2

no of tiles needed = 3240/30

= 108

therefore 108 tiles are needed

hope it helps :)

Answered by Anonymous
14

\sf\huge\underline\blue{Question}

  • How many tiles whose length and breadth are 6 cm and 5 cm respectively will be needed to fit in a rectangular region whose length and breadth are respectively 90 cm and 36 cm?

\sf\huge\underline\purple{Answer}

(First, method)

\underline{\bf{\dag}\:\mathfrak{As \ we \ know \ that\: :}}

\sf \green{no \: of \: tiles}  =   \sf \purple{\dfrac{area \: of \: rectangular \: region}{area \: of \: rectangular \: tile}}

\sf\red{\dfrac{Length \ of \ the \ region \times Breadth \ of \ the \ region}{Length \ of \ tile \times Breadth \ of \ the \ tile}} = \sf{Tile \ needed}

  \sf\blue{\dfrac{{\cancel 90 \times {{\cancel 36}}}}{{ \cancel 6 \times {{\cancel 5}}}}}  =  \sf \pink{ \dfrac{18 \times 6}{1}} =  \sf \orange{108}

•°• Hence, verified! that the tiles needed to fit in a rectangular region is  108 tiles.

__________________________________________________________

(2nd method)

\sf{Breadth \ of \ tile = 5cm}

\sf{Length \ of \ tile = 6cm}

\;\boxed{\sf{\pink{Area_{\:(rectangle)} = Length \times Breadth}}}

\sf{5cm \times 6cm} = \sf{30cm}

\sf{Breadth \ of \ the \ region} = \sf{36cm}

\sf{Length \ of \ the \ region} = \sf{90cm}

\;\boxed{\sf{\gray{Area_{\:(rectangle)} = Length \times Breadth}}}

\sf{90cm \times 36cm} = \sf{3,240}

\underline{\bf{\dag}\:\mathfrak{As \ we \ know \ that\: :}}

\sf \green{no \: of \: tiles}  =   \sf \purple{\dfrac{area \: of \: rectangular \: region}{area \: of \: rectangular \: tile}}

\sf\orange{\dfrac{3240}{30}} \div \sf{\dfrac{30}{30}} \rightarrow \sf{\dfrac{108}{1}}

\sf\Large\qquad\quad108\\ \begin{array}{cc} \cline{2 - 2}\sf 30 )&\sf \ 3240\\&\sf - 30 \downarrow\\ \cline{2-2}& \sf \ \ \ \ 240\\ &\sf \ - 240 \\ \cline{2-2} & \sf \ \0000 \\ \cline{2-2} \end{array}

[Note:- Please try to see the image on the web page or search on gõõgle and open the link in the chrome]

https://brainly.in/question/35401173  

•°• Hence, verified! that the tiles needed to fit in a rectangular region is  108 tiles.

______________________________________________________________________________________________

Similar questions