Math, asked by tanishajain282002, 7 months ago

10 If 17 cos A = 8, find 15 cosec A - 8 sec B.​

Answers

Answered by janavi43thakkar
0

Answer:

Given : 17\cos A=817cosA=8

To find : 15 \csc A -8 \sec A15cscA−8secA

Solution :

17\cos A=817cosA=8

\cos A=\frac{8}{17}cosA=

17

8

We know, \sec A=\frac{1}{\cos A}secA=

cosA

1

\sec A=\frac{1}{\frac{8}{17}}secA=

17

8

1

\sec A=\frac{17}{8}secA=

8

17

We know, \sin A=\sqrt{1-\cos^2 A}sinA=

1−cos

2

A

\sin A=\sqrt{1-(\frac{8}{17})^2}sinA=

1−(

17

8

)

2

\sin A=\sqrt{\frac{17^2-8^2}{17^2}}sinA=

17

2

17

2

−8

2

\sin A=\sqrt{\frac{225}{17^2}}sinA=

17

2

225

\sin A=\sqrt{(\frac{15}{17})^2}sinA=

(

17

15

)

2

\sin A=\frac{15}{17}sinA=

17

15

\csc A=\frac{1}{\sin A}cscA=

sinA

1

\csc A=\frac{1}{\frac{15}{17}}cscA=

17

15

1

\sec A=\frac{17}{15}secA=

15

17

Substitute in the expression,

15 \csc A -8 \sec A=15\times\frac{17}{15}-8\times\frac{17}{8}15cscA−8secA=15×

15

17

−8×

8

17

15 \csc A -8 \sec A=17-1715cscA−8secA=17−17

15 \csc A -8 \sec A=015cscA−8secA=0

Similar questions