Math, asked by shaily67, 1 year ago

10. If 3^x+y= 81 and 81^x-y=3^8, then the values of x and y are respectively​

Answers

Answered by YameshPant
22

Step-by-step explanation:

 {3}^{x + y}  = 81 \\    = >  {3}^{x + y} =  {3}^{4}  \\  =  > x + y = 4.......(i) \\  \\  {81}^{x - y}  =  {3}^{8}  \\  =  >  {3}^{4(x - y)}  =  {3}^{8}  \\  =  > 4(x - y) = 8 \\  =  > x - y = 2.....(ii) \\  \\ from \: (i) \: and \: (ii) \\ x + y = 4 \\ x - y = 2 \\ ................. \\  2x = 6 \\  =  > x = 3 \: put \: in \: (i) \\ 3 + y = 4 =  > y = 1

Answered by Salmonpanna2022
3

Step-by-step explanation:

\mathsf{Given : 3^{x + y} = 81}

\mathsf{\bigstar\;\;81\;can\;be\;written\;as : 3^4}

\mathsf{\implies 3^{x + y} = 3^4}

\bigstar\;\;\textsf{When Bases are same on both sides, Exponents should be equal}

\mathsf{\implies x + y = 4\;-----\;(1)}

\mathsf{Given : 81^{x - y} = 3^{8}}

\mathsf{\implies (3^4)^{x - y} = 3^{8}}

\mathsf{\implies 3^{4(x - y)} = 3^{8}}

\mathsf{\implies 4(x - y) = 8}

\mathsf{\implies (x - y) = \dfrac{8}{4}}

\mathsf{\implies x - y = 2\;-----\;(2)}

\textsf{Adding Equations (1) and (2), We get :}

\mathsf{\implies (x + y) + (x - y) = 4 + 2}

\mathsf{\implies x + x + y - y = 6}

\mathsf{\implies 2x = 6}

\mathsf{\implies x = 3}

\textsf{Substituting x = 3 in Equation (1), We get :}

\mathsf{\implies 3 + y = 4}

\mathsf{\implies y = 4 - 3}

\mathsf{\implies y = 1}

Answers :

★  x = 3

★  y = 1

Similar questions