10. If 4 is the zero of the cubic polynomial p(x)=x²-3x² - 6x + 8 then find the other zeroes of p(x)
Answers
Given p(x) = x^3 - 3x^2 - 6x + 8.
Given x = 4 is a zero of p(x).
= > x - 4 will be a factor of p(x).
Divide p(x) by x - 4, we get
--------------------------------------------------------------------------------------------------
x - 4) x^3 - 3x^2 - 6x + 8 ( x^2 + x - 2
x^3 - 4x^2
---------------------------------------
x^2 - 6x + 8
x^2 - 4x
------------------------------------------
-2x + 8
-2x + 8
---------------------------------------------
0
---------------------------------------------
Now,
= > p(x) = (x - 4)(x^2 + x - 2)
= > (x - 4)(x^2 - x + 2x - 2)
= > (x - 4)(x(x - 1) + 2(x - 1))
= > (x - 4)(x + 2)(x - 1).
-------------------------------------------------------------------------------------------------------
Therefore, the remaining zeroes are : -2,1.