Math, asked by sanjudaharpale4, 11 months ago

10. If a, b and c are in continued proportion, prove that
3a2-4ab + 5b2 /3b2 -4bc +5c2=a/c​

Answers

Answered by amansharma264
1

EXPLANATION.

If a, b, c are in continued proportion.

Prove that :

\sf \displaystyle \frac{3a^{2} - 4ab + 5b^{2}  }{3b^{2} - 4bc + 5c^{2} } = \frac{a}{c}

As we know that,

If a, b, c are in continued proportion then,

⇒ a/b = b/c.

\sf \displaystyle \frac{a}{b} = \frac{b}{c} = k \ (say)

\sf \displaystyle b = ck. - - - - - (1)

\sf \displaystyle a = bk

Put the value of b = ck in the expression, we get.

\sf \displaystyle a = (ck)(k)

\sf \displaystyle a = ck^{2}. - - - - - (2)

Put the value of a and b in the equation, we get.

\sf \displaystyle \frac{3(ck^{2}) ^{2} - 4(ck^{2} )(ck) + 5(ck)^{2}  }{3(ck)^{2} - 4(ck)c + 5c^{2} }

\sf \displaystyle \frac{3c^{2} k^{4} - 4c^{2}k^{3}  + 5c^{2}k^{2}  }{3c^{2} k^{2} - 4c^{2} k + 5c^{2} }

\sf \displaystyle \frac{c^{2}k^{2}(3k^{2}  - 4k + 5) }{c^{2}(3k^{2} - 4k + 5)  }

\sf \displaystyle \frac{c^{2}k^{2}  }{c^{2} } = k^{2} = \frac{a}{c}

Hence proved.

Similar questions