Math, asked by ninad160, 9 months ago

10) If alpha= 45° then find the value of

\frac{1+{sin}^{2} \alpha }{ {cos}^{2} \alpha }



Answers

Answered by Saby123
2

</p><p>\huge{\red{\boxed{\boxed{\underline{\underline{ Merry Christmas!! }}}}}}

{ \sin( \alpha ) }^{2}  =  \frac{1}{2}

 { \cos( \alpha ) }^{2}  =  \frac{1}{2}

= 3.

Hope this helps you.....

Answered by Sharad001
122

Question :-

10)  \: \sf if  \:  \alpha = 45 \degree \: then \: find -  \\  \to \:  \frac{1 +  { \sin}^{2} \alpha }{ { \cos}^{2}  \alpha}  \\

Answer :-

 \implies \:  \boxed{\:  \frac{1 +  { \sin}^{2} \alpha }{ { \cos}^{2}  \alpha}   = 3} \\

Explanation :-

we have ,

 \to \:  \frac{1 +  { \sin}^{2} \alpha }{ { \cos}^{2}  \alpha}  \\  \:  \\  \sf \:  \: put \:  \alpha = 45 \degree \\  \\  \to \:  \frac{1 +  { \sin}^{2}45 \degree }{ { \cos}^{2} 45 \degree }  \\  \\   \because \:  \sin45 \degree =   \frac{1}{ \sqrt{2} }  =  \cos45 \degree \\  \\  \to \:  \frac{1 +  { (\frac{1}{ \sqrt{2} }) }^{2} }{ { (\frac{1}{ \sqrt{2} } )}^{2} }  \\  \\  \to \:  \frac{1 +  \frac{1}{2} }{ \frac{1}{2} }  \\  \\  \to \:  \frac{ \frac{3}{2} }{ \frac{1}{2} }  \\  \\  \to \: 3 \\  \\  \implies \:  \boxed{\:  \frac{1 +  { \sin}^{2} \alpha }{ { \cos}^{2}  \alpha}   = 3}

Similar questions