Math, asked by somvijay27, 11 months ago

10. If p/q is a rational number such that the prime
facterization of p/q is of the form 2^a 5^b is where
a and b are non- Negative integer than the
decimal expansion of the rational number​

Answers

Answered by shadowsabers03
0

Case 1:- Let a ≥ b. Then,

\displaystyle\longrightarrow\sf{\dfrac{p}{q}=2^a\times5^b}

\displaystyle\longrightarrow\sf{\dfrac{p}{q}=2^{a-b+b}\times5^b}

\displaystyle\longrightarrow\sf{\dfrac{p}{q}=2^{a-b}\times2^b\times5^b}

\displaystyle\longrightarrow\sf{\dfrac{p}{q}=2^{a-b}\times(2\times5)^b}

\displaystyle\longrightarrow\sf{\dfrac{p}{q}=2^{a-b}\times10^b}

Hence the decimal expansion looks like,

\displaystyle\longrightarrow\sf{\underline{\underline{\dfrac{p}{q}=\left(2^{a-b}\right)\underbrace{000\dots000}_b}}}

E.g.: If \displaystyle\sf{\dfrac{p}{q}=2^4\times5^2,} then,

\displaystyle\longrightarrow\sf{\dfrac{p}{q}=\left(2^{4-2}\right)\underbrace{00}_2}

\displaystyle\longrightarrow\sf{\dfrac{p}{q}=400}

Case 2:- Let a ≤ b. Then,

\displaystyle\longrightarrow\sf{\dfrac{p}{q}=2^a\times5^b}

\displaystyle\longrightarrow\sf{\dfrac{p}{q}=2^a\times5^{a+b-a}}

\displaystyle\longrightarrow\sf{\dfrac{p}{q}=2^a\times5^a\times5^{b-a}}

\displaystyle\longrightarrow\sf{\dfrac{p}{q}=(2\times5)^a\times5^{b-a}}

\displaystyle\longrightarrow\sf{\dfrac{p}{q}=5^{b-a}\times10^a}

Hence the decimal expansion looks like,

\displaystyle\longrightarrow\sf{\underline{\underline{\dfrac{p}{q}=\left(5^{b-a}\right)\underbrace{000\dots000}_a}}}

E.g.: If \displaystyle\sf{\dfrac{p}{q}=2^2\times5^4,} then,

\displaystyle\longrightarrow\sf{\dfrac{p}{q}=\left(5^{4-2}\right)\underbrace{00}_2}

\displaystyle\longrightarrow\sf{\dfrac{p}{q}=2500}

Similar questions