10. If TanA=
1-cos B
sin B
then tan2A=
Answers
Step-by-step explanation:
join me for fun
tcd-bnpt-gas
Answer:
hey buddy here's your answer hope you Will understand plz Mark me as brainliest
Step-by-step explanation:
∵cosAcosBcosC=
∵cosAcosBcosC= 8
∵cosAcosBcosC= 83
∵cosAcosBcosC= 83
∵cosAcosBcosC= 83 −1
∵cosAcosBcosC= 83 −1
∵cosAcosBcosC= 83 −1 and sinAsinBsinC=
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 8
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC=
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −1
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC=
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3 −1
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3 −13+
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3 −13+ 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3 −13+ 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3 −13+ 3
∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3 −13+ 3