Math, asked by mahendraghormade0, 6 months ago

10. If TanA=
1-cos B
sin B
then tan2A=​

Answers

Answered by Anonymous
1

Step-by-step explanation:

join me for fun

tcd-bnpt-gas

Answered by varshakumari452
1

Answer:

hey buddy here's your answer hope you Will understand plz Mark me as brainliest

Step-by-step explanation:

∵cosAcosBcosC=

∵cosAcosBcosC= 8

∵cosAcosBcosC= 83

∵cosAcosBcosC= 83

∵cosAcosBcosC= 83 −1

∵cosAcosBcosC= 83 −1

∵cosAcosBcosC= 83 −1 and sinAsinBsinC=

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 8

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC=

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −1

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC=

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3 −1

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3 −13+

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3 −13+ 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3 −13+ 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3 −13+ 3

∵cosAcosBcosC= 83 −1 and sinAsinBsinC= 83+ 3 ∴tanAtanBtanC= 3 −13+ 3 As in △ABC,A+B+C=π∴tanAtanBtanC=tanA+tanB+tanC= 3 −13+ 3

Similar questions