Math, asked by akash534411, 11 months ago

10. If the figure, DE || BC
AD = x + 5, AB = 3x + 5
AE = x + 1, AC = 3x - 2, find x​

Attachments:

Answers

Answered by Anonymous
15

\large\underline\mathfrak{Answer-}

\bold{\sf{\blue{Value\:of\:x\:is\:3}}}.

\large\underline\mathfrak{Step\:-\:by\:-\:step\:explanation:}

Given :

  • DE || BC

  • AD = x + 5

  • AB = 3x + 5

  • AE = x + 1

  • AC = 3x - 2

To find :

  • Value of x.

Solution :

We know that, if a line is drawn parallel to one side of a triangle, then is bisects the other two sides in same ratio.

We can write it as :

\therefore \sf{\dfrac{AD}{AB}\:=\:\dfrac{AE}{AC}}

: \implies \sf{\dfrac{x\:+\:5}{3x\:+\:5}\:=\:\dfrac{x\:+\:1}{3x\:-\:2}}

: \implies \sf{(x+5)(3x-2)\:=\:(3x+5)(x+1)}

: \implies \sf{\cancel{3x^2}\:-\:2x\:+15x\:-10\:=\:\cancel{3x^2}\:+\:3x\:+\:5x\:+5}

: \implies \sf{13x\:-\:8x\:=\:5\:+\:10}

: \implies \sf{5x\:=\:15}

: \implies \sf{x\:=\:{\cancel{\dfrac{15}{5}}}} \small{\sf{3}}

: \implies \sf{\red{x\:=\:3}}

\therefore \bold{\sf{\blue{Value\:of\:x\:is\:3}}}.

Answered by Anonymous
7

\huge\bold\green{Question}

If the figure, DE || BC

AD = x + 5, AB = 3x + 5

AE = x + 1, AC = 3x - 2, find x

\huge\bold\green{Answer}

According to the question we have given :-

→ AB = 3x + 5

→ AE = x + 1

→ DE || BC

→ AD = x + 5

→ AC = 3x - 2

So, as said in question we have to find out the correct value of " x "

As we know that parallel line bisects the other two sides in same ratio of the triangle

So , Simply We can write it as :-

\tt{\dfrac{AD}{AB}\:=\:\dfrac{AE}{AC}}

\tt{\dfrac{x\:+\:5}{3x\:+\:5}\:=\: \dfrac{x\:+\:1}{3x-2}}

\tt{(x+5)(3x-2)\:=\:(3x+5)(x+1)}

\tt {\cancel{3x^2}\:-\:2x\:+15x\:-10\:=\:\cancel{3x^2}\+\:3x\:+\:5x\:+5}}

\tt{13x\:-\:8x\:=\:5\:+\:10}

\tt{5x\:=\:15}

\tt{x\:=\:{\cancel{\dfrac{15}{5}}} = 3}

Hence the required value of " x " is 3

Similar questions