Math, asked by reshmazaman204, 5 months ago

10. If the length of a rectangle is doubled and breadth is halved, then what would be the effect on its
perimeter and area?​

Answers

Answered by Saby123
36

Solution :

Let us assume that the rectangle initially has a length of a units and a breadth of b units .

Area Of Rectangle :

=> [Length × Breadth ]

=> ab

Perimeter of the rectangle :

=> 2 [Length + Breadth ]

=> 2[ a + b]

Now , the length of the rectangle is doubled and the breadth is halved.

New Length :

=> 2a

New Breath :

=> b/2

New Area :

=>{ 2a } × { b/2}

=> ab

New Perimeter ;

=> 2 [ 2a + b/2 ]

=> 2 [ 4 a + b]/2

=> 4a + b

Thus , we can observe that the area remains constant while the perimeter changes by 2a - b units .

This is the required answer .

_________________________________


angelgirlnew: not bad
Answered by DARLO20
73

L,

  • Length of a rectangle is x unit.

  • Breadth of the rectangle is y unit.

W ɴ ʜ,

\red\bigstar\:\:{\underline{\purple{\boxed{\bf{\green{Perimeter_{(rec.)}\:=\:2\:(Length\:+\:Breadth)}}}}}} \\

:\longrightarrow\:\:\bf{Perimeter\:=\:2\:(x\:+\:y)}--(1) \\

Aɢᴀɪɴ,

\pink\bigstar\:\:{\underline{\orange{\boxed{\bf{\purple{Area_{(rec.)}\:=\:Length\times{Breadth}}}}}}} \\

\longmapsto\:\:\bf{Area\:=\:x\times{y}} \\

\longmapsto\:\:\bf{Area\:=\:x\:y}--(2) \\

Aʀɪɴɢ ʜ ǫsɪɴ,

  • Length of the rectangle is doubled, i.e. 2x.

  • Breadth is halved, i.e. \bf{\dfrac{y}{2}} \\ .

:\longrightarrow\:\:\bf{Perimeter\:=\:2\:\Big(2x\:+\:\dfrac{y}{2}\Big)} \\

:\longrightarrow\:\:\bf{Perimeter\:=\:2\times{\dfrac{4x\:+\:y}{2}}} \\

:\longrightarrow\:\:\bf{Perimeter\:=\:4x\:+\:y}--(3) \\

S,

✒ Change in perimeter is,

➛ equation (3) - equation (1)

➛ (4x + y) - [2 × (x + y)]

➛ 4x + y - (2x + 2y)

➛ 4x + y - 2x - 2y

2x - y

\Large\bf\orange{Therefore,}

Perimeter of the rectangle is changes by (2x - y) units.

 \\

Aɴᴅ,

\longmapsto\:\:\bf{Area\:=\:2x\times{\dfrac{y}{2}}} \\

\longmapsto\:\:\bf{Area\:=\:x\:y}--(4) \\

S,

✒ Change in area is,

↣ equation (4) - equation (2)

↣ xy - xy

0

\Large\bf\green{Therefore,}

Area of the rectangle is same as before (no change).


angelgirlnew: colourful answers ❤
ItzMultipleThanker: Nice! ❤️
kaurkuldeepkaur95: nice
Similar questions