Math, asked by jone35, 4 months ago

10-if the mean of 16, 14, X, 23, 20 is 18. Find the
value of x.
a. 17
b-16​

Answers

Answered by TwilightShine
22

Answer :-

  • Option a is correct.

  • The value of x is 17.

Given :-

  • The mean of 16, 14, x, 23 and 20 is 18.

To find :-

  • The value of x.

Step-by-step explanation :-

We know that :-

 \underline{ \boxed{ \sf Mean =  \dfrac{Sum  \: of  \: observations}{Number  \: of \:  observations}}}

Here,

  • Sum of observations = 16 + 14 + x + 23 + 20.

  • Number of observations = 5.

  • Mean = 18.

-----------------

   \underline{\underline{\mathfrak{Substituting  \: these  \: values \:  in  \: the \:  formula,}}}

  \boxed{\sf \dfrac{16 + 14 + x + 23 + 20}{5}  = 18}

Adding all the numbers,

   \implies\boxed{ \sf\dfrac{73 + x}{5}  = 18}

Transposing 5 from LHS to RHS, changing it's sign,

  \implies\boxed{ \sf73 +x = 18 \times 5}

On multiplying 18 by 5,

 \implies \boxed {\sf73 + x = 90}

Transposing 73 from LHS to RHS, changing it's sign,

  \implies\boxed{ \sf x = 90 - 73}

Subtracting 73 from 90,

   \implies \overline{\boxed{\sf x = 17.}}

-----------------------------------------------------------

  • Hence, the value of x is 17.
Answered by IamJaat
103

★ Question :-

  • If the mean of 16, 14, x , 23, 20 is 18.Find the value of x.

ㅤㅤㅤㅤㅤㅤㅤ

★ Given :-

  • Mean of 16, 14, x, 23, 20 is 18.

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

★ To find :-

  • value of x

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

★ Formula to remember :-

 \large {\boxed {\pmb {\sf {\underline {\overline {\red { Mean \; = \dfrac{ sum \; of  \;  observations}{Total \; observations}}}}}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

★ Solution :

  • Mean = 18
  • Sum of observations = 16 , 14, x, 23, 20
  • Total observations = 5

ㅤㅤㅤㅤㅤㅤㅤ

 \small {\pmb {\frak {\underline {\pink {Putting \; the \; values \; in \; formula :-}}}}}

ㅤㅤㅤㅤㅤㅤㅤ

 \to \sf { 18 = \dfrac { 16 + 14 + x + 23 + 20}{5}}

ㅤㅤㅤㅤㅤㅤㅤ

\to \sf { 18 = \dfrac { 73 + x}{5}}

ㅤㅤㅤㅤㅤㅤㅤ

 \to \sf { 18 \times 5 = 73 + x}

ㅤㅤㅤㅤㅤㅤㅤ

\to \sf { 90 = 73 + x}

ㅤㅤㅤㅤㅤㅤㅤ

 \to \sf { 90 - 73 = x}

ㅤㅤㅤㅤㅤㅤㅤ

 \to \sf { 17 = x}

ㅤㅤㅤㅤㅤㅤㅤ

So, the value of x = 17.

ㅤㅤㅤㅤㅤㅤㅤ

Therefore, Opt (a) is correct.

Similar questions