Math, asked by anshumankarna123, 10 months ago

10. If the non-zero numbers a,b,c are in AP and
tan-1a., tan-1b, tan-1c
are also in AP, then
(a) a = b = c (b) b²= 2ac (c) a² = bc (d) c² = ab​

Answers

Answered by pulakmath007
17

SOLUTION

GIVEN

1. The non-zero numbers a,b,c are in AP

2. \:  \:  \:  \: \sf{  { \tan}^{ - 1}a \: , \:  { \tan}^{ - 1} b  \:  ,\:  { \tan}^{ - 1}c \:  \:  \: are \: in \:  AP\: }

TO CHOOSE THE CORRECT OPTION

Then

(a) a = b = c

(b) b²= 2ac

(c) a² = bc

(d) c² = ab

EVALUATION

Since a, b, c are in AP (Arithmetic progression)

So 2b = a + c .......... (1)

Again

\sf{  { \tan}^{ - 1}a \: , \:  { \tan}^{ - 1} b  \:  ,\:  { \tan}^{ - 1}c \:  \:  \: are \: in \:  AP\: }

 \implies\sf{2  { \tan}^{ - 1}b \:  =  \:  { \tan}^{ - 1} a   + \:  { \tan}^{ - 1}c  }

  \implies \displaystyle\sf{  { \tan}^{ - 1} \bigg( \frac{2b}{1 -  {b}^{2} }  \bigg)\:  =  \:  { \tan}^{ - 1}  \bigg(  \frac{a + c}{1 - ac} \bigg)  }

  \implies \displaystyle\sf{   \bigg( \frac{2b}{1 -  {b}^{2} }  \bigg)\:  =  \bigg(  \frac{a + c}{1 - ac} \bigg)  }

  \implies \displaystyle\sf{   \bigg( \frac{2b}{1 -  {b}^{2} }  \bigg)=  \bigg(  \frac{2b}{1 - ac} \bigg)  } \: ( \because \: 2b = a + c)

  \implies \displaystyle\sf{1 -  {b}^{2}  = 1 - ac  }

  \implies \sf{ {b}^{2}  =  ac  }

  \implies \displaystyle \sf{ { \bigg(  \frac{a + c}{2} \bigg)}^{2}  =  ac  }

  \implies \displaystyle \sf{ { \big(  {a + c} \big)}^{2}  =4  ac  }

  \implies \displaystyle \sf{ { \big(  {a + c} \big)}^{2}   - 4  ac  = 0 }

  \implies \displaystyle \sf{ { \big(  {a  - c} \big)}^{2}   = 0 }

  \implies \displaystyle \sf{a = c} \:  \:  \: ....(2)

From Equation (1) we get

 \sf{2b = 2a \: }

  \implies \displaystyle \sf{ b = a } \:  \: ....(3)

Equation (2) & (3) gives a = b = c

FINAL ANSWER

The correct option is

(a) a = b = c

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

tan⁻¹(x/y)-tan⁻¹(x-y/x+y)=.......(x/y≥0),

Select Proper option from the given options.

(a) π/4

(b) π/3

(c) π/2

(d) π

https://brainly.in/question/5596504

Answered by Anonymous
26

\huge{\boxed{\rm{\red{Answer}}}}

2b = a + c \large\purple{\texttt{Equation 1}}

Now 2tan-¹b = tan-¹a + tan-¹c

or 2b / 1 - b² = a + c / 1 - ac

Put 2b = a + c

b² = ac by \large\purple{\texttt{Equation 1}} that is a , b, c are in G.P

Also , 4b² = 4ac

or ( a + c )² - 4ac = 0 by \large\purple{\texttt{Equation 1}}

( a - c )² = 0

Therefore, a = c = b by \large\purple{\texttt{Equation 1}}

@Itzbeautyqueen23

Hope it's helpful

Thank you :]

Similar questions