Math, asked by zainabsaiyed, 3 months ago

10. If the radius of a cylinder is 14 cm and the height is 5 cm, then find the volume of
this cylinder. (=22/7)​

Answers

Answered by Anonymous
69

Answer:

Volume of the cylinder = 3080 cm³

Step-by-step explanation:

Given:

  • Radius of the cylinder = 14 cm
  • Height of the cylinder = 5 cm

To find:

  • Volume of the cylinder.

Solution:

  • Radius (r) = 14 cm
  • Height (h) = 5 cm

We know that,

{\boxed{\sf{Volume\:of\: cylinder=\pi\:r^2h}}}

  • [put values]

\implies\sf{Volume\:of\: the\: cylinder=\dfrac{22}{7}\times\:(14)^2\times\:5\:cm^3}

\implies\sf{Volume\:of\: the\: cylinder=\dfrac{22}{7}\times\:14\times\:14\times\:5\:cm^3}

\implies\sf{Volume\:of\: the\: cylinder=22\times\:2\times\:14\times\:5\:cm^3}

\implies\sf{Volume\:of\: the\: cylinder=3080\:cm^3}

Therefore, the volume of the cylinder is 3080 cm³.

________________

Additional Info :

  • Volume of cylinder = πr²h
  • T.S.A of cylinder = 2πrh + 2πr²
  • Volume of cone = ⅓ πr²h
  • C.S.A of cone = πrl
  • T.S.A of cone = πrl + πr²
  • Volume of cuboid = l × b × h
  • C.S.A of cuboid = 2(l + b)h
  • T.S.A of cuboid = 2(lb + bh + lh)
  • C.S.A of cube = 4a²
  • T.S.A of cube = 6a²
  • Volume of cube = a³
  • Volume of sphere = 4/3πr³
  • Surface area of sphere = 4πr²
  • Volume of hemisphere = ⅔ πr³
  • C.S.A of hemisphere = 2πr²
  • T.S.A of hemisphere = 3πr²
Answered by thebrainlykapil
157

\large\underline{ \underline{ \sf \maltese\red{ \: Question:- }}}

  • If the radius of a cylinder is 14 cm and the height is 5 cm, then find the volume of the cylinder. Take (π=22/7)

 \\  \\  \\

\large\underline{ \underline{ \sf \maltese\red{ \: Given:- }}}

  • \sf\green{Radius \: of \: Cyclinder \: = \: \blue{\fbox\orange{14cm }}}
  • \sf\green{Height\: of \: Cyclinder \: = \: \blue{\fbox\orange{5cm }}}

 \\  \\  \\

\large\underline{ \underline{ \sf \maltese\red{ \: Diagram:- }}}

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{14cm}}\put(9,17.5){\sf{5cm}}\end{picture}

 \\  \\  \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese\red{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Volume \: of \: Cyclinder \: = \:\pi \:  {r}^{2} h }   }}\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \:  =  \:  \frac{22}{7} \:  \times  \: (14 )^{2}  \:  \times  \: 5    }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \:  =  \:  \frac{22}{7} \:  \times  \: 14 \:  \times  \: 14  \:  \times  \: 5    }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \:  =  \:  \frac{22}{ \cancel7} \:  \times  \:  \cancel{14} \:  \times  \: 14  \:  \times  \: 5    }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \:  =  \:  {22} \:  \times  \:  2 \:  \times  \: 14  \:  \times  \: 5    }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \:of \: cyclinder  =  \:  3080 {cm}^{3}  }}\\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Volume \: of \: Cyclinder \: = \: 3080 {cm}^{3}  }}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

More about Volume :-

  • A solid figure occupies space. The magnitude of the space occupied by a solid figure is called its volume.
  • The volume of an object / solid refer to the space occupied by the object/ solid.
  • The capacity of a container refers to the quantity that a container can hold.
  • If the volumes of any two solid figures are equal then their capacities or space occupied are also equal . , However their surface areas may be different

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions