Math, asked by anishasharma508, 1 month ago

10.If the zeroes of the quadratic polynomial : x^2 + (a +1)x + b are 2 and -3, then

a ) a = 0, b = -6
b ) a = -1, b = 6
c ) a = -2, b = -6​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:2 \: and \:  - 3 \: are \: zeroes \: of \:  {x}^{2} + (a + 1)x + b

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\:2 + ( - 3) =  - \dfrac{(a + 1)}{1}

\rm :\longmapsto\: - 1 =  - a - 1

\rm :\longmapsto\: - 1  + 1=  - a

\rm :\longmapsto\: 0=  - a

\bf\implies \:a = 0

Also,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\:(2) \times ( - 3) = \dfrac{b}{1}

\bf\implies \:b =  - 6

  • So, Option (a) is correct.

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha   + \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta   + \beta  \gamma  +  \gamma   \alpha = \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions