10. If (V7+v5):(V7-V5) =a+v35b,find the value of a and b.
Answers
Step-by-step explanation:
Given:-
(√7 + √5)/(√7 - √5) = a + b√35
To find:-
Value of a and b in expression.
Solution:-
We have,
(√7 + √5)/(√7 - √5)
The denomination is √7 - √5.
We know that
Rationalising factor of √a - √b = √a + √b.
so, rationalising factor of √7 - √5 = √7 + √5
On rationalising the denominator them
=> [(√7 + √5)/(√7 - √5)]×[(√7 + √5)/(√7 + √5)]
=> [(√7 + √5)(√7 + √5)]/[(√7 - √5)(√7 + √5)]
since, (a-b)(a+b) = a^2 - b^2
where, a = √7 and b = √5
=> [(√7 + √5)^2]/[(√7)^2 - (√5)^2]
=> [(√7 + √5)^2]/(7 - 5)
=> [(√7 + √5)^2]/2
since: (a+b)^2 = a^2 + 2ab + b^2
where, a = √7 and b = √5
=> [(√7)^2 + 2(√7)(√5) + (√5)^2]/2
=> [7 + 2√(35) + 5]/2
=> [12 + 2√(35)]/2
=> 6 + 2√(35)
∴ 6 + 2√(35) = a + b√(35)
On comparing with the value of RHS, we get
a = 6
b = 2√(30) = 2
Answer:-
Hence, the required value of a = 6 and b = 2.
Used formulae:-
- Rationalising factor of √a - √b = √a + √b.
- (a-b)(a+b) = a^2 - b^2
- (a+b)^2 = a^2 + 2ab + b^2