10 If x3 + y3 = 3axy then again
y2-ax
y2-ax
a)
b) -
x2-ay
x²-ay
c)
x²-ay
y2-ax
d)
x²-ay
y2-az
Answers
Answered by
0
Step-by-step explanation:
wehave
x
3
+y
3
−3axy=0
3x
2
+3y
2
dx
dy
−3a(x
dx
dy
+y)=0
3x
2
+3y
2
dx
dy
−3ax
dx
dy
−3ay=0
3x
2
−3ay+(3y
2
−3ax)
dx
dy
=0
dx
dy
=
y
2
−ax
ay−x
2
dx
dy
=
ax−y
2
x
2
−ay
Again,
dx
2
d
2
y
=
(ax−y
2
)
2
ax−y
2
(2x−a
dx
dy
)−(x
2
−ay)(a−2y
dx
dy
)
dx
2
d
2
y
=
(ax−y
2
)
2
ax−y
2
(2x−a(
ax−y
2
x
2
−ay
))−(x
2
−ay)(a−2y(
ax−y
2
x
2
−ay
))
dx
2
d
2
y
=
(ax−y
2
)
2
ax−y
2
[
ax−y
2
2ax
2
−2xy
2
−ax
2
−a
2
y
]−(x
2
−ay)[
ax−y
2
a
2
x−ay
2
−2x
2
y+2ax
2
]
dx
2
d
2
y
=
(ax−y
2
)
3
ax−y
2
(ax
2
−a
2
y−2xy
2
)−(x
2
−ay)(ax
2
+ay
2
−2x
2
y)
dx
2
d
2
y
=
(ax−y
2
)
3
2a
2
xy
proved.
Similar questions