Math, asked by zara3589, 5 months ago

10 If x3 + y3 = 3axy then again
y2-ax
y2-ax
a)
b) -
x2-ay
x²-ay
c)
x²-ay
y2-ax
d)
x²-ay
y2-az​

Answers

Answered by maithileedorlikar2
0

Step-by-step explanation:

wehave

x

3

+y

3

−3axy=0

3x

2

+3y

2

dx

dy

−3a(x

dx

dy

+y)=0

3x

2

+3y

2

dx

dy

−3ax

dx

dy

−3ay=0

3x

2

−3ay+(3y

2

−3ax)

dx

dy

=0

dx

dy

=

y

2

−ax

ay−x

2

dx

dy

=

ax−y

2

x

2

−ay

Again,

dx

2

d

2

y

=

(ax−y

2

)

2

ax−y

2

(2x−a

dx

dy

)−(x

2

−ay)(a−2y

dx

dy

)

dx

2

d

2

y

=

(ax−y

2

)

2

ax−y

2

(2x−a(

ax−y

2

x

2

−ay

))−(x

2

−ay)(a−2y(

ax−y

2

x

2

−ay

))

dx

2

d

2

y

=

(ax−y

2

)

2

ax−y

2

[

ax−y

2

2ax

2

−2xy

2

−ax

2

−a

2

y

]−(x

2

−ay)[

ax−y

2

a

2

x−ay

2

−2x

2

y+2ax

2

]

dx

2

d

2

y

=

(ax−y

2

)

3

ax−y

2

(ax

2

−a

2

y−2xy

2

)−(x

2

−ay)(ax

2

+ay

2

−2x

2

y)

dx

2

d

2

y

=

(ax−y

2

)

3

2a

2

xy

proved.

Similar questions