Math, asked by rupalshah1472, 1 year ago

10. IfA (17, 5) and B (3,0) are points then distance AB =​__

Answers

Answered by Anonymous
131

\large{\underline{\underline{\mathfrak{\green{\sf{Solution:-}}}}}}.

\large{\underline{\underline{\mathfrak{\green{\sf{Given\:Here:-}}}}}}.

✴Point A(17,5) , and B(3,0).

\large{\underline{\underline{\mathfrak{\pink{\sf{Find\::Here:-}}}}}}.

\red{\:Distance\:between\:AB}.

\large{\underline{\underline{\mathfrak{\green{\sf{Explanation:-}}}}}}.

➡We Know that,

\:Distance\:Between\:A(x,y)\:And\:B(p,q)\:=\sqrt{(x-p)^2+(y-q)^2}.

➡So,

\implies\:Distance\:=\sqrt{(17-3)^2+(5-0)^2}.

\implies\:Distance\:=\sqrt{(14^2+5^2}.

\implies\:Distance\:=\sqrt{196+25}.

\implies\:Distance\:=\sqrt{221}.

\implies\:Distance\:=\:11.

________________

\red{\:Follow}.

Answered by shraddhamahato2
1

Step-by-step explanation:

Given:- A(17,5) and B(3,0)

so, X1=17

X2=3

y1=5

y2=0

by using distance formula...

we have...,

AB = √(x2 -x1)² + (y2 - y1)²

AB = √(3 - 17)² + (0 - 5)²

AB = √(-10)² + (-5)²

AB = √100 + 25

AB = √125

AB = 5 sq.units

therefore, the distance between AB is 5 sq.units

Similar questions