Math, asked by kumarikhushi3241, 8 months ago

10. In A PQR, right-angled at Q. PR + QR = 25 cm and PQ = 5 cm. Determine the values of
sin P. cos P and tan P.​

Answers

Answered by brajeshgaur1974
2

PR+QR=25 (given) and PR=25−QR

5

2

+QR

2

=PR

2

(Pythagorean theorem)

Then substitute PR to get this equation = 5

2

+QR

2

=(25−QR)

2

Solve for QR

5

2

+QR

2

=625−50QR+QR

2

(QR

2

cancels out)

5

2

=625−50QR

−600=−50QR

QR=12

Solve for PR using original equation

PR=13

Now draw the triangle on your paper for help solving the next step

sin=

hyp

opp

⇒sin(P)=

13

12

cos=

hyp

adj

⇒cos(P)=

13

5

tan=

adj

opp

⇒tan(P)=

5

12

Answered by Disha976
16

 \rm { Given \: that, }

  •  \rm { PR + QR = 25}
  •  \rm { PQ = 5 }

_____

 \rm { Let \: PR \:  be \: x.</p><p>}

 \rm { \therefore QR = 25 - x</p><p> }

Applying Pythagoras theorem in ΔPQR, we obtain,

 \rm\blue { {PR}^{2} = {PQ}^{2} + {QR}^{2} }

 \rm{ \leadsto {x}^{2} = {(5)}^{2} + {(25-x)}^{2} }

 \rm{ \leadsto \cancel { {x}^{2}} = 25 + 625 \cancel { + {x}^{2}} - 50x }

 \rm{ \leadsto 50x = 650</p><p> }

 \rm{ \leadsto x = \cancel {\dfrac{650}{50}</p><p>}=13cm }

 \rm\red { \therefore, PR = 13 cm</p><p>}

 \rm\red { QR = (25 - 13) cm = 12 cm }

______

Now, the values of sin P, cos P and tan P

 \rm { sin \: P =\dfrac{ side \: opposite \: to \:  \angle P}{Hypotenuse} = \dfrac{12}{13} }

 \rm { cos \: P = \dfrac{ side \: adjacent \: to \:  \angle P}{Hypotenuse} = \dfrac{5}{13} }

 \rm { tan \:  P= \dfrac{ side \: opposite \: to \:  \angle P}{side \: adjacent \: to \:  \angle P } = \dfrac{12}{5} }

Similar questions