Math, asked by debbarmasayan0, 7 hours ago

10. In A PQR, right-angled at Q. PR + QR = 25 cm and PQ = 5 cm. Determine the values of
sin P. cos P and tan P.
+
11 Stale whether the following are true​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that, In triangle PQR, right angled at Q,

  • PR + QR = 25 cm

  • PQ = 5 cm

Let assume that,

QR = x cm

So, PR = 25 - x cm

So, In right triangle PQR

By, using Pythagoras Theorem, we have

\rm :\longmapsto\: {PR}^{2}  =  {PQ}^{2}  +  {QR}^{2}

\rm :\longmapsto\: {(25 - x)}^{2} =  {x}^{2} +  {5}^{2}

\rm :\longmapsto\:625 +  {x}^{2} - 50x =  {x}^{2}  + 25

\rm :\longmapsto\:625  - 50x =  25

\rm :\longmapsto\: - 50x =  25 - 625

\rm :\longmapsto\: - 50x =  - 600

\bf\implies \:x = 12

Thus, we have

\rm :\longmapsto\:PR = 13 \: cm

\rm :\longmapsto\:QR = 12 \: cm

\rm :\longmapsto\:PQ = 5\: cm

So,

\rm\implies \:sinP = \dfrac{QR}{PR}  = \dfrac{12}{13}

\rm\implies \:cosP = \dfrac{PQ}{PR}  = \dfrac{5}{13}

\rm\implies \:tanP = \dfrac{QR}{PQ}  = \dfrac{12}{5}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Attachments:
Similar questions