Math, asked by punyaalva2, 3 days ago

10. In a quadrilateral ABCD, verify that AB + BC + CD+DA+ AC + BD.​

Attachments:

Answers

Answered by sweethag1234
1

Answer:

this is the correct answer

Attachments:
Answered by ӋօօղցӀҽҍօօղցӀҽ
6

Now visually identify that the quadrilateral ABCD. It is divided by diagonals AC and BD into four triangles

 \large{ \bold{ \star \: { \sf{given}}}}

Now, take each triangle separately and apply the above property and then add LHS and RHS of the equation formed.

In triangle ABC,

AB + BC > AC (1)

In triangle ADC,

AD + CD > AC (2)

In triangle ADB,

AD + AB > DB (3)

In triangle DCB,

DC+ CB > DB. . _______.(4)

Adding equation (1), (2), (3) and (4) we get,

AB + BC + AD + CD + AD + AB + DC+ CB > AC + AC + DB + DB

AB + AB + BC + BC + CD + CD + AD + AD > 2AC + 2DB

2AB + 2BC + 2CD + 2AD > 2AC + 2DB

(Hence, AB + BC + CD + DA > AC + BD)

 \large{ \bold{ \sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}}

 \large{ \sf{ \: \: formula \: for \: quadrilaterals}}

 \large{ \red {area \: of \: rectangle = l \times b}}

 \large{ \orange{area \: of \: parallelogram = l \times h}}

 \large{ \green{ \: perimeter \: of \: rectangle = 2x(l \times b)}}

 \large{ \blue{perimeter \: of \: parallelogram = 2x(l + b)}}

hope its help u

Similar questions