Math, asked by prajjumutalik, 1 year ago

10. In given figure, find tanP - cotR.

Attachments:

Answers

Answered by rbarik
0

Step-by-step explanation:

QR = √(15^2 - 12^2) = √81=9

tanP - cotR = 9/12 - 9/12 = 0

Answered by Anonymous
4

Answer:-

\large\sf{Using\:Pythagoras\:theorem}

\longrightarrow\small\sf{{PR}^{2}={PQ}^{2}+{QR}^{2}}

\longrightarrow\small\sf{{(13)}^{2}={(12)}^{2}+{QR}^{2}}

\longrightarrow\small\sf{169=144+{QR}^{2}}

\longrightarrow\small\sf{QR=5cm}

Now, tan P = \small\sf{\frac{QR}{PQ}=\frac{5}{12}}

\small\sf{CotR=\frac{QR}{PQ}=\frac{5}{12}}

\small\sf{tan\:P-Cot\:R=\frac{5}{12}-\frac{5}{12}=0}

Similar questions