Math, asked by bhartisoni0050, 4 months ago

10. In the adjoining figure, AD is the angle bisector of exterior Z A of A ABC.
BD bisects Z B. If AB = AC, then prove that
(i) AD || BC
(ii) AB = AD.​

Answers

Answered by Anonymous
14

{ \huge{ \pink{ \underline{ \underline{ \green{ \mathbb{ \bigstar{ \purple{answer}}}}}}}}}

 \sf \: given : abc \: is \: a \: triangle  \\  \sf \: ad \: is \: the \: exterior \: bisector \: of \angle \: a \: and \: meets \: bc \\ \\ \sf produced \: at \: d  \: and \: ba \: is \: produced \: to \: f\:   \\  \green \bigstar \ \bf \: to \: prove :  \frac{bd}{cd}  =  \frac{ab}{ac}  \\  \angle \: cad =  \angle \: ace \: (alternate \: angles) \\ similarly \: ce  \parallel \: ad \: cut \: by \: ab \\  \angle \: fad =  \angle \: aec \: (corresponding \: angles) \\ ac = ae(by \: isosceles  \red\triangle \: theorem) \\ now \: in \green \triangle \: bad \:. \: ce \parallel \: da \\ ae = dc(basic \: proportionality \: theorem) \\  \bf \: ab = bd \:  \\ but \: ac = ae(proved \: above) \\ ac = dc \\   \: \bf ab = bd \: or \:  \frac{ab}{ac}  =  \frac{bd}{dc} (hence \: proved)

Similar questions